Digital, Responsible Citizenship in a Connected World

IO3 – Digital Literacy and Citizenship

Guide for teachers

Prepared by Future in Perspective Ltd.

Version 4 – March 2019

Project Title: Digital, Responsible Citizenship in a Connected World
Project Acronym: DRC
Project Number: 2017-1-CY01-KA201-026739
Table of Contents

Introduction to the Guide for Teachers .. 3

Writing the Guide for Teachers: Methodology ... 4

Link to other DRC Outputs .. 5

User Guide: Guidance Notes for Teachers ... 6

Chapter 1 - How to enhance the quality of teaching digital skills through the use of digital technology ... 7

Catalogue of teaching methods and approaches .. 7

Methods for Communication and Collaboration .. 7

Methods for Digital Content Creation .. 12

Chapter 2 - Approaches and teaching methods to promote the students’ interest in technology 25

Catalogue of teaching methods and approaches .. 25

Methods for Information and Data Literacy ... 26

Methods for Communication and Collaboration ... 32

Methods for Digital Content Creation .. 39

Methods for Problem-solving ... 43

Chapter 3 - Approaches and methods that connect digital skills with real life issues 49

Catalogue of teaching methods and approaches .. 49

Methods for Information and Data Literacy ... 49

Methods for Communication and Collaboration .. 52

Methods for Problem-solving ... 60

Chapter 4 - Best Practices: Digital resources and tools to enhance how digital literacy and citizenship is taught in schools ... 64

Catalogue of best practices for digital literacy and citizenship .. 65

Tools related to Information and Data Literacy ... 65

Tools Related to Communication and Collaboration .. 68

Tools related to Safety .. 69

Tools related to Problem-solving ... 74

Chapter 5 - Summary of research findings from DRC partner countries .. 79

Research Findings from Cyprus .. 79

Research Findings from Greece ... 80

Research Findings from Ireland .. 81

Research Findings from Italy ... 83

References ... 84
Introduction to the Guide for Teachers

This Digital Literacy and Citizenship Guide is targeted at mainstream teachers, teaching assistants and other education providers of primary school students, aged 6-12 years. The Guide aims to support teachers and teaching providers to develop learning activities, games and exercises which can be delivered in the classroom with students, and which will enhance the digital competence of the students, encourage them to be responsible in how they participate and communicate online and to cultivate active (digital) citizenship in students.

The Guide also provides access to a range of innovative teaching activities, approaches, practices and methodologies and aims to act as inspiration for teachers to use some of these activities when integrating the topic of digital literacy into their lesson plans. This Guide provides descriptions of some best practices, which DRC project partners have highlighted through desk-research activities, as being beneficial for teachers. As such, the content of this Guide is aimed at teachers who want to develop and adapt innovative approaches and methods in the classroom to enhance how digital literacy is taught to primary school students and to encourage and motivate young learners to develop their digital competence and to become responsible online citizens. To present this Guide for Teachers, the content is arranged through the following chapters:

1. Chapter 1 - How to enhance the quality of teaching digital skills through the use of digital technology
2. Chapter 2 - Approaches and teaching methods to promote the students’ interest about technology
3. Chapter 3 - Approaches and methods that connect digital skills with real life issues
4. Chapter 4 - Best Practices: Digital resources and tools to enhance how digital literacy and citizenship is taught in schools
5. Chapter 5 - Summary of research findings from DRC partner countries

The content of Chapters 2-3 has been developed with reference to the Digital Competence Framework for Citizens - DIGCOMP 2.0. This framework was developed by the European Commission to encourage EU citizens to improve their digital competence. As such, the framework aims to encourage citizens to become competent users of digital technology and digital content; and
to be able to use both in a safe environment. The framework outlines five key areas, where citizens should develop their skills and competence. These competence areas include:

- **Information and Data Literacy**
 This relates to: browsing, searching and filtering data, information and digital content; evaluating data, information and digital content; managing data, information and digital content.

- **Communication and Collaboration**
 This relates to: interacting through digital technologies; sharing through digital technologies; engaging in citizenship through digital technologies; collaborating through digital technologies; netiquette; managing digital identity.

- **Digital Content Creation**
 This relates to: developing digital content; integrating and re-elaborating digital content; copyright and licenses; programming.

- **Safety**
 This relates to: protecting devices; protecting personal data and privacy; protecting health and well-being; protecting the environment.

- **Problem-solving**
 This relates to: solving technical problems; identifying needs and technological responses; creatively using digital technologies; identifying digital competence gaps.

Throughout Chapters 2, 3 and 4, you will see that activities, approaches and methodologies have been grouped under these five themes. So therefore, if you are interested in improving your students’ competence in communication and collaboration online, you will find a range of resources in this category under each chapter. For more information on the specific knowledge, skills and attitudes to be developed at each level under each of these five competence areas, please visit: https://ec.europa.eu/jrc/digcomp

Writing the Guide for Teachers: Methodology

To inform the development of this Guide for Teachers, researchers from Cyprus, Greece, Ireland and Italy undertook a research and consultation process to investigate how digital literacy and citizenship are being taught in the primary school curriculum in each country, how teaching these topics is resourced, if there are any specific innovative practices which teachers use in these countries to teach
these topics and what challenges exist in developing the digital literacies of young learners. A synopsis of the findings from this research process is included in the final chapter of this Guide, as we invite you to read these research summaries to gain an insight into how the research and selection of relevant best practices was undertaken in each partner country.

The innovative tools, resources, methods and approaches that were identified throughout this research process are presented in this Guide in chapters 1 to 3. In compiling a catalogue of best practices under each chapter, researchers from all partner countries undertook independent desk-research and then contacted local teachers to validate the usefulness of the best practices identified and to gain insight into how these activities and methods would work in reality in the primary school classroom. While some examples included are more specific to some countries, they have all been included in this Guide to serve as a source of inspiration to teachers engaged in the DRC project in all countries. As such, through our research activities, researchers identified similar methods and approaches under each of the different chapter headings. While the methods may be similar, the application of these methods, activities and approaches is different in each of the examples profile in the catalogues of best practice and for this reason, none of the tools and resources identified by partners during the research process have been omitted or edited. To access a shorter version of this Guide which may be more specific to your national context, we recommend that you access the national report developed by the partner organisation in your country. The national reports that were compiled to inform the content of this Guide can be accessed through the DRC website and learning portal, available at: www.digitalcitizenship.oeg.

Link to other DRC Outputs

In developing the Guide for Teachers, as well as undertaking national research, partners also aimed to link the content of the Guide to the findings from the previous project outputs, namely:

» IO1: The Digital Citizenship profile/identity

» IO2: Pedagogical Framework for the development of e-Toolkit on Digital Citizenship

Specifically, through the research activities completed to develop the Pedagogical Framework for the eToolkit, participating partner organisations identified and profiled a range of online tools and methodologies which teachers can use to teach the topics related to the use of ICT, digital literacy,
responsible online citizenship, online safety, online communication and cyberbullying. As such, tools and resources that were identified in the Pedagogical Framework have been included in Chapter 4 of this Guide. While the Pedagogical Framework is comprised of a list of over 50 tools, a shortened version of this is included in this Guide. Chapter 4, below, presents a summary of the tools and resources that specifically relate to encouraging teachers to use ICT in their teaching practice, developing the digital literacy of young learners and how to encourage them to be responsible digital citizens. As such, these tools have been included in this Guide as they are the most relevant to the topic of this Guide.

User Guide: Guidance Notes for Teachers

The Guide for Teachers presents a theoretical framework for teachers on the topic of digital citizenship, as well as some examples and ideas for how it can be integrated into the primary school curriculum in participating partner countries, and more widely across Europe. In designing this Guide, project partners have aimed to include some practical activities and examples of best practice in integrating digital tools and IT into the primary school curriculum; however, in the main, this Guide is concerned with presenting a catalogue of ideas, methodologies and approaches which teachers can use to gain a better insight into the topic of digital citizenship and to generate some ideas for how specific activities and approaches can be adapted and tailored to the abilities, interests and needs of their class group. The Guide is quite extensive in the range of methodologies and activities it presents; however, now all activities will be relevant or realistic for all primary school teachers to use in their teaching practice. The Guide includes activities for younger learners on how to use storytelling and digital storytelling to build basic skills and vocabulary; to more complex activities which adopt a challenge-based approach to learning. In these activities, researchers from the DRC project aim to show teachers how they can create simple activities – like web quest challenges – to encourage learners to engage in independent research online and to develop their critical thinking, problem-solving and team-work and collaboration skills. For more advanced activities in this Guide, researchers present how educational robotics can be integrated into the primary school curriculum to develop 21st century skills in young learners such as collaboration, critical thinking, creativity and communication. While these activities will not appeal to all teachers, we encourage teachers to take some time to review the activities, methodologies and approaches in the Guide. When you find an activity or method which is particularly interesting and which you think would benefit your students, we recommend that you review the references used by researchers to identify this innovative practice and that you develop a lesson plan to integrate some of the best practices profiled in this Guide into
your teaching practice. For activities and methodologies included in the Guide, these can be repurposed to address specific curriculum topics or can be implemented as they are described below so as to support primary school students to develop their digital literacy skills.

Chapter 1 - How to enhance the quality of teaching digital skills through the use of digital technology

In this chapter, we present practical guidelines and innovative teaching methods that can be applied in the classroom to enhance the quality of how digital skills is taught to young students (aged 6-12) through the use of digital technology. The aim of these guidelines, methods and activities is to show how teaching digital literacy should not be a mundane task; rather it should harness some of the basic functions of digital technology to provide students with opportunities to develop basic digital literacy skills in an engaging and interactive format. These practices and methodologies should also encourage and inspire teachers to go beyond the basic functions of IT equipment and to apply digital technologies in a creative and engaging activity so that young students will not only develop their digital competence, but will also be encouraged to use their creativity, imagination, sense of curiosity and problem-solving techniques to work through different digital media.

Catalogue of teaching methods and approaches

The activities and methods contained in the catalogue have been identified by researchers in all project countries through desk-research activities and in consultation with primary school teachers. The catalogue presents all activities that were identified and profiled by partners through this process. Specifically, it contains methods and approaches which aim to develop the competence of young learners in relation to Communication and Collaboration and Digital Content Creation as referenced in the DIGCOMP framework.

Methods for Communication and Collaboration

<table>
<thead>
<tr>
<th>Name:</th>
<th>Google Docs and Collaborative Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of example</td>
<td>Google Docs is a free web-based version of Microsoft Word that provides teachers with some powerful features to help their students develop 21st century skills. The use of online technology in the classroom allows multiple authors to edit a document in time together. This feature facilitates collaborative</td>
</tr>
<tr>
<td>Learning among students since they can work together on a story, a script for a play, or any other kind of group writing project. They can use the comments feature to give each other feedback and make decisions together, thus it combines peer editing with cooperative grouping. Google Docs is an especially promising tool for online collaborative writing (Gralla, 2010; Morales & Collins, 2007). According to Limbu and Markauskaite (2015), collaborative writing tools such as Google Docs enable learners to participate in collaborative writing activities. The capacity to share and edit documents between group members makes collaboration much easier (Chiu, Wang, Popescu, Li & Lau, 2014, p.150).</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Target age</td>
<td>10-12</td>
</tr>
<tr>
<td>Group size</td>
<td>Any</td>
</tr>
<tr>
<td>Materials required</td>
<td>Google docs, PCs, projector, internet connection</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>In the classroom, a Google Document can be used in three ways for a collaborative writing activity: 1. The teachers can create and share a document with all students. Set a writing task on a given project e.g. language topic for which students have to write something from pre-given notes. 2. Student collaborative group add information in the doc, and contribute a sentence, a paragraph etc. and share a draft with teacher in order to receive feedback within the document. 3. Teachers encourage editing of previous sentences, both for content and errors. 4. Students can work on the Google Doc in order to write, edit, and collaborate efficiently on the final version of the document. 5. Students communicate with each other and collaborate to present the final project in the class.</td>
</tr>
<tr>
<td>Digital skills taught through this example</td>
<td>Digital writing skills; collaborative writing; communication; 21st century skills</td>
</tr>
<tr>
<td>Please explain how this method can improve the quality of teaching</td>
<td>Collaborative writing tasks require students to work together to produce a common shared assignment. In groups, students scaffold tasks collaboratively and achieve a more developed product than the ones from individual work (Chang & Simpson, 1997; Jones, 2007)</td>
</tr>
</tbody>
</table>
Name:
Scavenger hunting with Digital Photography

Description of example
The aim of this activity is to set a topic that students need to find examples and take a photograph of to show to the class. If smartphones, devices and/or digital cameras are available to students in school, then this activity can be completed in the classroom; however, as most schools have a policy of not allowing smart phones and devices in the school, this may work best as a homework assignment.

Target age
8-12 years

Group size
This is an individual homework assignment that students can present to the class.

Materials required
Digital camera or smartphone for all students - this can be ensured by encouraging students to use their own devices at home and then either bringing the device to school (BYOD) or emailing the photographs directly to the teacher for a ‘Show and Tell’ presentation in school.

Instructions for teacher
Teachers follow the below steps:
- The teacher sets an assignment for students whereby they have to search and find items that they can take a photograph of and show to their classmates. One example could be to improve the students’ understanding of mathematical angles and shapes; by asking them to complete a scavenger hunt to find as many examples of acute, obtuse and right angles as they can - either at home or in the classroom depending on the availability of digital cameras and devices.
- The teacher can discuss with learners about the topic and identify possible objects that they could photograph.
- The teacher can then talk the learners through some basic functions of taking a photograph on their smart phone.

References
The teacher asks all learners to email their photographs to a school email address.

The teacher then compiles all photographs into a short slideshow.

At the next class session, the teacher invites the learners to the front of the classroom to show their photographs to the whole class through a 'Show and Tell' activity.

The teacher then gives feedback to the learners on their photographs.

Digital skills taught through this example

Depending on the type of device used - smartphone, tablet or digital camera - students will improve their dexterity in using their chosen device. They will also understand the basics of framing, editing and adding effects to digital photographs. When sharing the photographs with their peers and teacher before their presentation, they will also enhance their skills in using file-sharing or email programmes.

Please explain how this method can improve the quality of teaching

This is an example of active learning, where the students are encouraged to use digital devices to explore curriculum-related topics and concepts. It is also a unique activity that helps to connect the students to the world around them. It used embedded and enquiry-based techniques to motivate students to increase their understanding of angles and shapes; but can also be applied to other curriculum subjects. As such, it affectively employs the integration of digital devices to improve the quality of the learning for the students.

References:

Description of example

The use of digital games in didactical activities are widely regarded as a powerful learning tool with the potential to foster the development of transversal skills, such as digital competence, reasoning and creativity.

Gaming environments containing specific authoring features, that will be employed to allow all learners (including those with learning difficulties), not only
to play, but also to create their own games through the collaboration among the groups.

GBL tries to motivate, activate and involve students to act as if they were in a real context, through the use of dynamics, mechanics and gaming strategies. The gamification focuses on the motivation and involvement of the students, which function as the “engine” of the learning process, and it foresees a high degree of personalization, stimulating enjoyment and fun in working.

<table>
<thead>
<tr>
<th>Target age</th>
<th>GBL can be applied to any school grade, adjusting the level of difficulty according to the students’ age. Its use is particularly recommended for primary school students, and it is suitable for younger learners of pre-primary school as well.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group size</td>
<td>Cooperative learning and team work are the most suitable didactic methods for this example of application of digital skills to teaching/learning activities. According to the different typologies and rules of the games, it will be necessary to divide the pupils of the class in relatively small groups, as to have different teams and stimulate the interaction among each participant, sometimes even in the form of a face to face session.</td>
</tr>
<tr>
<td>Materials required</td>
<td>Digital gaming requires the use of didactical ICT tools and software, the occasional use of dedicated devices as game/play-stations, or the access to web platforms/hubs. Nowadays, didactical game activities necessarily require an intensive and skilled use of mobile devices in real BYOD teaching/learning environments.</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>Even if the adopted tools through GBL are many, simple to use, flexible and motivating, their effectiveness and added educational value largely depend on the use made of them: student activities need to be carefully designed and orchestrated and embedded in carefully thought-out pedagogical scenarios. These chores are upon the teachers. At the following link, teachers can explore the website of the MAGICAL project, which developed several applications of GBL: https://docs.google.com/document/d/1g7yrdsEALmvKHpW4KtKoDp-W0o6H3uMsPHdoFS6exb8/pub</td>
</tr>
</tbody>
</table>
Digital skills taught through this example

The GBL requires the use of technological tools in an informal context. Younger students can use apps on iPad and mobile devices, and through these they can learn the letters of the alphabet, the time tables, songs, etc. Older students, instead, learn different things watching YouTube videos, or surfing the Internet. The advantage of computer-based and digital devices learning, is that the contents are easy to be learnt, and can be enjoyed at any moment during the day.

Please explain how this method can improve the quality of teaching

Game Based Learning (GBL) is widely recognized as a potentially powerful approach to learning, and many studies and projects have highlighted the opportunities that digital games offer to support immersive, situated and learner-centred educational experiences, showing a considerable capability to enhance students’ engagement and motivation.

This new didactical form favours an increase in the interactivity, pushing students to reach faster a well-defined objective; moreover, it raises in the students the level of awareness of their actions, challenging them to act and react to a more pragmatic scenario, which is not normally proposed during the traditional didactic activities.

References

- MAGICAL project (Game Based Learning) https://docs.google.com/document/d/1g7yrdsEALmvKHpW4KtKoDp-W0o6H3uMsPHdoFS6exb8/pub

Methods for Digital Content Creation

<table>
<thead>
<tr>
<th>Name:</th>
<th>Create a story using digital storytelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of example</td>
<td>Digital storytelling empowers students to be confident communicators and creators of digital tools as they gain essential 21st-century literacy skills and gain deeper understanding in all areas of the curriculum. Students watch videos of other students’ creations and devote classroom time to working individually or in small groups to create their digital stories on the subject of a course e.g. history. Teachers write the narrative of a story with their students based on a history course topic and they then work individually or in groups to design their storyboard. Then they develop their digital story with the aid of the digital tools.</td>
</tr>
<tr>
<td></td>
<td>Storytelling creation tool and once this is completed, they present their story to the class.</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Target age</td>
<td>Any</td>
</tr>
<tr>
<td>Group size</td>
<td>Any</td>
</tr>
<tr>
<td>Materials required</td>
<td>Digital storytelling creation tools e.g. StoryJumper, Storybird, Pixton, ToonDoo, tablets, PCs, internet connection, projector</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>Teachers follow the below steps:</td>
</tr>
<tr>
<td></td>
<td>• Decide on a topic and they announce the subject of the topic to the students.</td>
</tr>
<tr>
<td></td>
<td>• Create an account in one of the digital storytelling creation tools</td>
</tr>
<tr>
<td></td>
<td>• Present the creation tool e.g. StoryJumper to the students</td>
</tr>
<tr>
<td></td>
<td>• Show examples of other students’ creations</td>
</tr>
<tr>
<td></td>
<td>• Provide instructions to students on how to use the tool</td>
</tr>
<tr>
<td></td>
<td>• Ask students to write the narratives of their stories</td>
</tr>
<tr>
<td></td>
<td>• Ask students to design their storyboards</td>
</tr>
<tr>
<td></td>
<td>• Create their digital storytelling</td>
</tr>
<tr>
<td></td>
<td>• Present their story to the class</td>
</tr>
<tr>
<td>Digital skills taught through this example</td>
<td>Digital storytelling activities develop students’ basic oral, written and digital skills, or content understanding.</td>
</tr>
<tr>
<td>Please explain how this method can improve the quality of teaching</td>
<td>Embracing digital storytelling skills to student it improves their digital literacy and communication skills and enhance their creative thinking. More precisely, by implementing digital storytelling in the classroom students practice the following skills:</td>
</tr>
<tr>
<td></td>
<td>• Research Skills (Documenting the story, finding and analysing pertinent information)</td>
</tr>
<tr>
<td></td>
<td>• Writing Skills (Formulating a point of view and developing a script)</td>
</tr>
<tr>
<td></td>
<td>• Organisation Skills (Managing the scope of the project, the materials used and the time it takes to complete the task;)</td>
</tr>
<tr>
<td></td>
<td>• Technology Skills (learning to use a variety of tools, such as digital cameras, microphones)</td>
</tr>
<tr>
<td></td>
<td>• Presentation Skills (Deciding how to best present the story to an audience)</td>
</tr>
<tr>
<td></td>
<td>• Interview Skills (Finding sources to interview and determining questions to ask)</td>
</tr>
<tr>
<td></td>
<td>• Interpersonal Skills (Working within a group and determining individual roles for group members)</td>
</tr>
<tr>
<td></td>
<td>• Problem-Solving Skills (Learning to make decisions and overcome obstacles at all stages of the project, from inception to completion; and)</td>
</tr>
<tr>
<td></td>
<td>• Assessment Skills (Gaining expertise critiquing their own and others’ work).</td>
</tr>
</tbody>
</table>
Name: Introducing multimedia

Description of example
creating a class webpage, blog or wiki
This example is an introduction to basic webpage design activity. Students will create a classroom website, blog or wiki.
Web design is fun to learn about and will allow students to express their own web ideas, using links, images, text and other resources.

Target age
10-12

Group size
Team of 2

Materials required
Weebly, PCs, pictures, Instructions guide, projector

Instructions for teacher
- Show examples to students
- Explain to students how to create a web page or website, using Weebly platform.
- Create a series of simple steps, so students can follow.

Digital skills taught through this example
Basic web development skills; learn to become active participants in the online community.

Please explain how this method can improve the quality of teaching
This activity personalize the learning experience of the students are more adept with technology, so by integrating it into the classroom, it helps them learn better and faster. It empowers students to be active learners and monitors teachers teaching and students performance.

Name: I create my own wiki and my first website

Description of example
This learning scenario aims at familiarizing pupils with Wiki-spaces platform and helping them develop skills of website creation. More specifically, pupils
<table>
<thead>
<tr>
<th>Target age</th>
<th>9-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group size</td>
<td>Groups of 2-3 pupils</td>
</tr>
<tr>
<td>Materials required</td>
<td>1 PC for each group, internet access, video projector</td>
</tr>
</tbody>
</table>
| **Instructions for teacher** | Initially the teacher can refer some things about the World Wide Web (WWW), the father of which is Tim Berners – Lee (CERN, Where the Web Was "WWW" born). The teaching approach involves in four phases:
Phase 1: I create a wiki and my first website
Children familiarize with wikispaces platform, they create a wiki and a website. They also discuss the role of a website administrator.
Phase 2: I insert pictures and format the text
Children learn how to format text and insert pictures in their websites.
Phase 3: I create a navigation menu and I insert videos
Children understand the importance of a website navigation menu. Then they create a preset navigation menu. They delete the contents of the preset menu and create they own menu contents using hyperlinks using colours and various letter styles.
Phase 4: Group presentation of digital creations
Children present their wiki’s to the whole class. A discussion follows regarding their work and alternative ideas |
| **Digital skills taught through this example** | Using Wikispaces platform and creating and managing a website |
| **Please explain how this method can improve** | The development and creation of a website locally on the computer has difficulties and limitations. Nevertheless, developing a Wiki is a simple task, without the need to master any programming skills. Also, the website editing |
The quality of teaching tools that are available through the Wikispaces platform are easy to use. The result is immediate, and pupils can make any website changes easily and quickly. The central idea of the scenario is to familiarize pupils with Wikispaces platform, and effectively help them develop skills of creating and managing a website, feeling little authors and creators in a digital and connected world. They learn how to use a wiki, how to write a new article on wiki, how to start an Online Discussion Community. This method nurtures cooperative learning as well as group collaboration (Hokanson & Hooper, 2000; Hazzan, 2004; Smith & Thron, 2007). See also:

http://c2.com/cgi/wiki?TopTenWikiEngines

https://www.mediacwiki.org/wiki/Manual:Config_script

"Δευτεράκια, ξεφτεράκια". (The smarty second class pupils).

mkoutri.blogspot.com/

<table>
<thead>
<tr>
<th>Name:</th>
<th>The looping command using Scratch programming language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of example</td>
<td>One of the most important concepts in ICT education is the use of looping structure. Primary school children need to master looping command in a programming language, in a simple way avoiding the complexity of classical programming languages. For this reason, the Scratch programming language is recommended. It is an environment attractive to students, with a modern and entertaining interface, while learners can directly see the results of each action. Through this teaching approach, students understand how looping structure operates and develop skills in using looping command.</td>
</tr>
<tr>
<td>Target age</td>
<td>9-12</td>
</tr>
<tr>
<td>Group size</td>
<td>Groups of 2-3 pupils</td>
</tr>
<tr>
<td>Materials required</td>
<td>A PC for each pupil group, video projector, internet connection, Scratch programming language platform</td>
</tr>
</tbody>
</table>
Phase 1: Exploration. Pupils recall their previous knowledge and try to solve more complex tasks using the Scratch programming language
Phase 2: Presentation Teacher presents a Scratch example which uses looping command and discusses details with pupils
Phase 3: Implementation Pupils use teacher instructions to create a Scratch video using looping commands
Phase 4: Evaluation / Reflection Teacher evaluates pupil knowledge through asking them to use their knowledge in a new Scratch scenario. |
<p>| Digital skills taught through this example | Programming with Scratch language |
| Please explain how this method can improve the quality of teaching | This method to mastering coding is based on fading scaffolding teaching approach. During fading scaffolding, pupils are supported and directed to handle a learning task or to master a concept, which initially they cannot manage without help. Teacher provides assistance only to those learning activities that are beyond the capabilities of the student and up to the point that pupils can continue to work without any further help. The general idea is that teacher involves pupils in challenging learning tasks are just over their current abilities. He/she expects that pupils will make mistakes, but he/she provides feedback and prompting in order pupils achieve the task or goal. It is important to accept mistakes and use them for attaining learning objectives. When pupils master the learning task, the teacher begins to decrease guidance, to remove "scaffolds", to allow the pupil work autonomously and independently. In this way, pupils become autonomous and self – confident in using technology and tools. |</p>
<table>
<thead>
<tr>
<th>Name:</th>
<th>Programming with Scratch language (if-then and if-then-else commands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of example</td>
<td>This activity is for pupils of primary school with basic knowledge of Scratch 2.0 programming language. The goal of the activity is pupils to understand the meaning and the use of the If-Then and If-Then-Else commands through simple examples, following teacher’s instructions. At the end, pupils should create by themselves an interaction game at Scratch 2.0</td>
</tr>
<tr>
<td>Target age</td>
<td>9-12</td>
</tr>
<tr>
<td>Group size</td>
<td>Groups of 2-3 pupils</td>
</tr>
<tr>
<td>Materials required</td>
<td>A PC for each pupil group, Scratch 2.0 programming language platform</td>
</tr>
</tbody>
</table>
| Instructions for teacher | **Phase 1: Presentation of Scratch 2.0 interface**
At the beginning of the activity, it is necessary to present to pupils the main programming interface of Scratch 2.0 and the use of the main commands that are going to be used.

Phase 2: Presentation of If-Then command
The teacher should present a simple example of using the If-Then command from real life e.g. “if we push the power button of a computer, then the computer will start”. Then, the teacher should present the If-Then command at Scratch 2.0 and how it can be used with an example. At the end, pupils should answer a short understanding test.

Phase 3: Presentation of If-Then-Else command
The teacher should present a simple example of using the If-Then-Else command from real life e.g. “If I have 1.5€ then I can buy a sandwich that costs 1.5€ else I can buy a cheese pie that costs 1€”. Then, the teacher should present the If-Then-Else command at Scratch 2.0 and how it can be used with an example. At the end, pupils should answer a short understanding test.

Phase 4: Creation of an interactive game with Scratch 2.0
Pupils should use all the previous knowledge that they get in order to create an interactive football game at Scratch 2.0. The football player should move 10 steps every time we click on him. At the center of the stadium, there is a ball. Every time the football player touches the ball, the ball should move 10
steps. If the ball passes the line of the goal then the football player should say “Goal” and both the player and the ball should initialize their positions.

Phase 5: Exercises
At the end of this activity, pupils should answer an understanding questionnaire about the If-Then and If-Then-Else commands.

| Please explain how this method can improve the quality of teaching | This method to mastering coding is based on fading scaffolding teaching approach. During fading scaffolding, pupils are supported and directed to handle a learning task or to master a concept, which initially they cannot manage without help. Teacher provides assistance only to those learning activities that are beyond the capabilities of the student and up to the point that pupils can continue to work without any further help. The general idea is that teacher involves pupils in challenging learning tasks are just over their current abilities. He/she expects that pupils will make mistakes, but he/she provides feedback and prompting in order pupils achieve the task or goal. It is important to accept mistakes and use them for attaining learning objectives. When pupils master the learning task, the teacher begins to decrease guidance, to remove "scaffolds", to allow the pupil work autonomously and independently. In this way, pupils become autonomous and self – confident in using technology and tools (see “The control commands If-Then and If-Then-Else at Scratch2.0, through the creation of an interaction game", Advanced Electronic Scenarios Operating Platform, http://aesop.iep.edu.gr/node/14122) |

Name: LMS Platforms (Moodle – e-Class – Edmodo – NEO LMS etc)

Description of example
Schools in Greece use the e-Class Electronic Classroom platform which addresses both teachers and students, with the goal of enriching the classical teaching that takes place daily at school, with modern tools that strengthen the learning process. The teacher creates online courses and has full two-way communication with his/her students. E-Class can also be used for training, collaborations, brainstorming etc, among teachers. The e-Class is based on the Greek open Open e-Class software (http://www.openeclass.org).
<table>
<thead>
<tr>
<th>Target age</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group size</td>
<td>Individual / group</td>
</tr>
<tr>
<td>Materials required</td>
<td>PC with internet connection</td>
</tr>
</tbody>
</table>

Instructions for teacher

A teacher that uses an LMS platforms like e-Class can easily:

- Create and manage a number of lessons incorporating text, images, videos or SCORM modules
- Make use of automated quiz creation
- Create learning lines and organize learning material in modules
- Get feedback and statistics concerning LMS use and content access by his/her pupils
- Store and organize in files learning material
- Assign and grade homework
- Create group of pupils for face to face or distant cooperative learning tasks
- Store and organize multimedia
- Upload and manage e-books in HTML format
- Achieve synchronous or asynchronous communication (chat, forum, messages, e-conferences)

(For further instructions on how to integrate LMS into the classroom see: https://wp0.vanderbilt.edu/cft/learning-and-course-management-systems/)

Digital skills taught through this example

Children develop multiple skills of accessing and managing information and learn how to cooperate with teachers and fellow-pupils on-line.

Please explain how this method can improve the quality of teaching

The e-Class platform gives new possibilities in education, offering a means of interaction and continuous communication between teachers and pupils. At the same time, it supports electronic organisation, storage and presentation of educational material, regardless of the limiting factors of space and time. Thus, it creates conditions for a dynamic educational environment. Open eClass platform is designed to implement new educational activities. Pivotal roles are those of the pupil and the teacher. In
particular, teachers can easily and quickly create easy-to-use and functional online lessons using his own teaching material (notes, presentations, texts, images, etc.). At the same time, pupils acquire an alternative channel access to knowledge offered. Open e-Class platform supports asynchronous tele-education services without limitations and commitments. Pupils need no specialized technical knowledge, since access learning material takes place through the use of a simple Web browser.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Using Story Remix to create Digital Stories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of example</td>
<td>Story Remix allows teachers to use photographs to create short video files which are creative and engaging for young learners, and which can be shared through social media platforms or the school’s website. Story Remix can also be used, where there has been a field-trip or study visit and where teachers can encourage young learners to create their own digital story of the trip by creative a short video with photographs.</td>
</tr>
<tr>
<td>Target age</td>
<td>10-12 years</td>
</tr>
<tr>
<td>Group size</td>
<td>There is no limit to the group size - but learners could develop this activity on their own.</td>
</tr>
<tr>
<td>Materials required</td>
<td>Laptops, PCs or access to smart devices for all learners; Access to a photo library to create digital stories; Access to Story Remix software.</td>
</tr>
</tbody>
</table>
| Instructions for teacher | Story Remix creates automatically generated videos from photographs that are stored in a Photo Library on a laptop or PC. As such, it can be a great way for teachers to present learning to students in a new and engaging way; or for teachers to encourage students to present their homework in a new format. Teachers follow the below steps:
 - As Story Remix automatically selects the best photographs from a Photo Library, and brings them together in one video clip, where music, filters and effects can be added by students – all teachers...
needs to do to get started is to upload their photographs to their
Photo Library and download the app.

- Using Story Remix, they can then select the photographs that they
 want to arrange in a video, and use a video editor in the app.
- The video can then be further personalized by teachers, and/or
 students depending on their access to IT equipment, by adding
different photographs, headings, titles, text, music clips and other
design effects and elements.
- For a step-by-step guide to using Story Remix, teachers can follow
 the steps at this link: [https://www.windowscentral.com/how-start-
 using-photos-story-remix-experience-windows-10](https://www.windowscentral.com/how-start-using-photos-story-remix-experience-windows-10)

<table>
<thead>
<tr>
<th>Digital skills taught through this example</th>
<th>Story Remix is designed to enable students and teachers to quickly create digital stories and short movies in the classroom. It is a very engaging programme for teachers to use with their students in creating a digital story. For an example of how this can be used, teachers can assign a task to students to create a Story Remix project on an issue affecting their local community. With the help of their parents, students can take photographs of their local area on the provided topic, and then when they are in class, they can upload their photographs from their camera or smartphone to the PC in school and create their Story Remix project. Students can then present their Story Remix projects to the class. As such, students and teachers will develop their digital skills in using the Microsoft suite, in photo-editing, creative collaboration, sound editing, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please explain how this method can improve the quality of teaching</td>
<td>By using Story Remix to create digital stories, this activity will at once develop the digital skills of young people in a fun and engaging way; while also teaching them the theory of digital story-telling. As such, the quality of teaching can be improved. This method can be applied to a range of different topics and projects - requiring young learners to collate photographs on a specific topic or subject and create their own educational video through the use of Story Remix software.</td>
</tr>
</tbody>
</table>
References

- How to get started with Story Remix in Photos: https://www.windowscentral.com/how-start-using-photos-story-remix-experience-windows-10

Name: Coder Dojo - Beginner App Inventor Sushi Cards

Description of example
CoderDojo is a global movement of free, open, volunteer-led coding clubs (Dojos) where young people aged 7–17 (Ninjas) can explore digital technology with the support of their fellow Ninjas and volunteer mentors. They can also be applied to teaching methods as all exercises and activities are freely available online through the Coder Dojo website.

Target age
7-12

Group size
10-15

Materials required
PC or laptop for all students; Internet access; instructions and templates from Coder Dojo.

Instructions for teacher
Teachers can choose from different activities from the Coder Dojo website, to develop a range of digital skills and competences in their learners. In this example, we suggest that teaches begin by introducing learners to using the Coder Dojo App Inventor - the type of app, quiz or game that they develop using this inventor can be made specific to the topic being taught.

The teacher should follow these steps:

- The teacher should set up an account on the App Inventor website, by visiting: dojo.so/invapp-start and then clicking on the Create apps! button in the top right-hand corner of the screen.

- As this app will be built on an Android platform, the teacher will have to create their app inventor account using a Google/Gmail account. If the teacher does not have a Gmail account, it is a good idea to set one up for the class so that they can use this account just for technology projects in the classroom.

- Once you have signed in with a Google account, App Inventor will show you options to set-up an Android device (a phone or tablet)

- Now that everything is set up, the teacher can begin to create apps in the classroom with their students. For this, they can go back to
the App Inventor in their browser and click on the button called ‘Start a New Project’

Call your project **MyQuizApp** and click OK.

You’ll see a screen like this one, which means you’re ready to get coding!

- From this screenshot, you can see that the App Inventor Designer view is broken into four key sections:
 - Palette, from which the teachers picks the components they will use to build the app
 - Viewer, where they can see the app they are working on, and rearrange and select components
 - Components, where they can see a list of the components in their app and their relationships to each other
 - Properties, where they can see and change the properties of the component they have selected at the moment
- There are other buttons but these four sections that users will use to develop their app.
- For information on the next steps to take in developing their app, teachers should access the full guide, at this link: https://projects.raspberrypi.org/en/projects/cd-sebento-appinv-1/3
Using this activity, young learners will be able to use the App Inventor tool to create a simple quiz; they will also learn some basic coding skills which can be used and applied to other projects.

Using Coder Dojo in the classroom is an active teaching method, because it involves learners in developing a digital project - depending on the subject being taught, the project developed can be adapted and related to the curriculum subject. As such, this is an engaging activity that will motivate young learners to develop their digital skills.

References:

Chapter 2 - Approaches and teaching methods to promote the students’ interest in technology

This Chapter presents teachers and educators with a variety of different approaches and teaching methods which they can use to promote and develop a students’ interest in using technology for educational purposes. The examples and activities presented in the following tables aim to encourage and motivate students to not only develop their digital skills, but to promote an appreciation among these learners so that they can apply their digital skills to a learning context.

Catalogue of teaching methods and approaches

The activities and methods contained in the catalogue have been identified by researchers in all project countries through desk-research activities and in consultation with primary school teachers. Specifically, this catalogue contains methods and approaches which aim to develop the competence of young learners in relation to Information and Data Literacy, Communication and Collaboration, Digital Content Creation and Problem-solving as referenced in the DIGCOMP framework.
Methods for Information and Data Literacy

<table>
<thead>
<tr>
<th>Activity Name:</th>
<th>Self-Organised Learning Environments (SOLE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>SOLEs are created when educators encourage students to work as a community to answer their own vibrant questions using the Internet. The whole process starts when either the teacher or the students pose a big question. In order to find answers, pupils form cooperative groups which can change later. They are allowed to move around class freely and share ideas with their class mates and are encouraged to formulate multiple answers to their questions. Finally, each group presents their findings.</td>
</tr>
<tr>
<td>Target age</td>
<td>9-12</td>
</tr>
<tr>
<td>Group size</td>
<td>Groups of four (approx.) students.</td>
</tr>
<tr>
<td>Materials required</td>
<td>Computers with large screens are better as they help facilitate group work. They also make the students’ work more visible which helps teacher see what they’re doing. One computer per four (approx.) students. Internet access, webcam (optional). Whiteboard to write questions or comments on. Large sheets of paper and pens for students to take notes and to help present their findings.</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>The SOLE process evolves in three phases (see SOLE Toolkit):
Phase 1 (5 min.): Question
A question is formulated in such a way to ignite curiosity and a genuine process of discovery. Teacher gives guidance on how pupils are expected to work during the SOLE.

Phase 2 (30-45 min): Investigation
Working groups use the internet to find out answers to the big questions. They resolve intergroup conflicts by themselves.

Phase 3 (10-20 min.): Review
Children share their discoveries and reflect on the wider SOLE process.</td>
</tr>
</tbody>
</table>
| Expected outcome of the method | According to the [SOLE toolkit](https://www.digital-citizenship.org) (p.9) pupils benefit from the SOLEs in the following ways:
Get empowered to take ownership of their learning experience
Improve reading comprehension, behaviour, language, creativity and problem-solving abilities
Enhance computer literacy
Develop the habits of a lifelong learner
Develop stronger memory recall
Strengthen interpersonal and presentation skills
Get better at integrating what they already know into discussions both inside and out of the classroom
Develop a more trusting relationship with educators and adults generally
Become more motivated to learn about different subjects and ideas |

Activity Name:	Digital concept mapping
Description of innovative teaching idea/method	Concept mapping is a teaching method that involves supporting students to make links between different and/or complex concepts and ideas through creating a visual or graphical representation of how the concepts are linked. It is an effective means of assessing the students’ grasp and understanding of a complex concept. With the development of digital concept mapping software, this activity can now be practiced in a digital environment which will help to develop the digital skills and motivation for students to use software programmes in the classroom.
Target age	8-12 years
Group size	Students should work in groups of 2/3
Materials required	Access to PC, laptop or smart device for all groups; Access to concept mapping software such as Coggle (fully online) or MindMup (must be downloaded to device but is free to use and creates unlimited concept maps).
Instructions for teacher	With the development of specific programmes and software which allows teachers and students to create concept maps, it is easy for teachers to introduce technology into their teaching practice to support students to further develop their understanding of key concepts and events. Depending on the
The benefits of using concept mapping tools is that they appeal to students with different learning styles; they encourage students to engage in higher order thinking and analysis; they encourage meaning-making and allow
students to elaborate and form understanding of concepts and events; and they also present students with a non-linear and visual means of representing their learning. As such, using digital concept mapping creates an active, meaningful and engaging learning activity for students.

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Activity Name:</th>
<th>Teaching/Learning of Computational Thinking</th>
</tr>
</thead>
</table>
| Description of innovative teaching idea/method | In the computer language, coding is intended as the layout of a program, that is a sequence of instructions performed by a calculator. It is tightly connected to that of computational thinking, a basic approach to the problems and their solutions.
For this reason, the computational thinking is entering more and more in the Italian scholastic classrooms, demonstrating that didactics have included the importance of this tool.
The Ministry of Instruction, University and Research is encouraging its diffusion in the whole national territory, and the National Plan for Digital School (PNSD) gave a particular importance to computational thinking, through the establishment of the figure of the digital animator, and by accelerating the diffusion of coding in the schools and making the teachers more skilled in this new useful language. |
| Target age | The diffusion of computational thinking is recommended by MIUR for the updating of the scholastic curricula, starting from the first year of primary education, and the Ministry of Education, Universities and Research has included it in the national curriculum. |
For this reason, a specific action of the National Plan is dedicated to the diffusion of computational thinking among primary school students.

<table>
<thead>
<tr>
<th>Group size</th>
<th>Activities regarding Computational Thinking could be suitable to class-sizes of primary and first grade of secondary school.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials required</td>
<td>The activities don’t require specific devices or tools, but some simple programming software for ordinary ICT tools setting in school, such as, Scratch! and Schratch Jr., developed by the MIT.</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>Teaching coding in school is possible by using simple tools, such as Scratch or Scratch Jr. for the younger children, or exercises of the website code.org for older students.</td>
</tr>
</tbody>
</table>

At the following link, teachers can find the section dedicated to educators of the Scratch website, that guides them through the use of the platform:

https://scratch.mit.edu/educators/

At the following links, teachers can find the homepage of the code.org website (first link), and a page of the website dedicated to educators, that contains a table displaying all the activities, organised in courses, that they can implement with students from different grades (see Figure 1), as well as different tools and one-lesson options (second link):

https://code.org/

https://studio.code.org/courses?view=teacher
The activity is proposed in the form of a game, where problem-solving is stimulated by requesting the children to play and try to win every challenge. The pupils have to engage, in order to understand what the possible solutions to their challenge can be, and, when reaching the objective, they improve their computational and problem-solving competencies. Meanwhile, they unconsciously write lines of computer code, even if on the concrete level they only moved some rectangular blocks, to each of which corresponds a function and a code (programming through blocks or visual programming).

Expected outcome of the method

The expected results for the pupils is the acquisition and application of the computational thinking: regardless of their knowledge on how to use a computer, they will be able to produce small programs like video games, or brief sequences, reflecting a model already in use in many European schools.

References

- Istituto Tecnologie Didattiche del Consiglio Nazionale delle Ricerche / Didactical Technologies Institute of National Research Council (ITD – CNR) https://www.itd.cnr.it/
Methods for Communication and Collaboration

<table>
<thead>
<tr>
<th>Activity Name:</th>
<th>Learning and acquiring new words through my body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>Combining body movements and physical interaction with learning material, specifically target abstract vocabulary</td>
</tr>
<tr>
<td>Target age</td>
<td>9-11</td>
</tr>
<tr>
<td>Group size</td>
<td>Individual/ team work</td>
</tr>
<tr>
<td>Materials required</td>
<td>Motion-based games</td>
</tr>
</tbody>
</table>
| Instructions for teacher | • Create a list with target new vocabulary (adjustment on specific curriculum)
• Engage students in the learning process
• Class-wide activities with motion-based games |
| Expected outcome of the method | • Development of cognitive abilities (i.e. memory ability, solving problem)
• Learning gains
• Affective outcomes (i.e. emotional engagement into the process, motivation to participate, increased self-confidence etc.) |

<table>
<thead>
<tr>
<th>Activity Name:</th>
<th>Gamification through Kahoot response system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>Kahoot! is a game-based learning platform which combines the dynamics of the game with the ability to monitor learning which establishes the cultivation of a constructive learning approach (Correia & Santos, 2017; Wang & Lieberoth, 2016; Vuong, 2017). As for Kahoot's most popular feature, teachers choose between millions of free public games and simulate them if necessary for their own needs or re-create a quiz (Plump & LaRosa, 2017). Kahoot transforms the learning process into more efficient and productive (Chaiyo & Nokham, 2017).</td>
</tr>
<tr>
<td>Target age</td>
<td>Any</td>
</tr>
<tr>
<td>Group size</td>
<td>Any</td>
</tr>
<tr>
<td>Materials required</td>
<td>Kahoot game-based platform, response system, range of devices (PCs, tablets or smartphones, laptops, tablets), internet connection, projector</td>
</tr>
</tbody>
</table>
| Instructions for teacher | • Teachers need to create kahoot account (https://getkahoot.com/)
• Create a new Quiz. Follow the [manual/ instructions guide](https://getkahoot.com/) on how to create a new quiz
• Make a Question for the Quiz
• Finalise and run the quiz |
Expected outcome of the method

| Students engagement and performance, creative skills, technological skills |

References

Activity Name:

Peer teaching partnerships

Description of innovative teaching idea/method

Peer teaching is not a new concept, but it is being applied to primary school teaching practices in recent times because it can encourage learning of both peer-teachers and peer-learners where there is mixed ability in the class group; and it is also a cost-effective means of providing more personalised and targeted learning to students, where resources in schools are limited. As there are benefits to both the peer-teacher and peer-learner, outlined below,
this can be a very effective teaching method to increase both students’ motivation to engage in digital learning. The reason being that in peer-teaching and learning, students tend to speak each other’s; discourse, so it can be a very motivational exercise for both parties involved and is a good example of active learning.

<table>
<thead>
<tr>
<th>Target age</th>
<th>10-12 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group size</td>
<td>Students work in pairs</td>
</tr>
<tr>
<td>Materials required</td>
<td>Laptop or smart devices for each pair</td>
</tr>
</tbody>
</table>

Instructions for teacher

The teacher follows these steps:

- The teacher divides the students into pairs.
- The teacher then distributes a smart device or tablet to all pairs – if there is a lack of technology available in the classroom, they first step can be completed using a pen and paper.
- The teacher then leads a short exercise with the students so that they can identify digital skills that one student has that the other can learn - this could be related to playing a game, or something more technical like completing a Coder Dojo project, for example.
- Once the skills have been identified, the teacher allows all pairs to spend 10-20 minutes teaching one another how to use this new skill/complete this task.
- An offline version of this activity can be replicated for any curriculum subject if there is not enough available devices for all pairs in the classroom.

Expected outcome of the method

Research shows that through peer-teaching and learning, the students can expect to experience the following benefits:

- Peer-teachers reinforce their own learning by teaching others.
- Peer-learners receive more individualized support to develop their understanding of new skills and concepts.
- The interaction between students through these partnerships promotes active learning.
Activity Name

Social Network Classroom Environment

Description of innovative teaching idea/method

The innovative idea behind this teaching method is the creation of a virtual social network for a class or a school, using the scholastic computer network, and aimed to implement a laboratorial activity, which highlights the importance of respecting the privacy in the Web and transmits the main rules of netiquette. It can offer a participative and interactive approach in order to face the problem of the education to digital citizenship and, particularly, to use the social networks in the respect of the privacy and safety of communication.

Target age

The activity requires the participation of the whole primary school class group, that will interact on line, even if they are in the. If well planned and managed by the teachers, it can be possible to widen the group, up to the involvement of the entire school. This type of activity is more appropriate for children starting from 10-11 years of age, because this is the age where they begin to access the social networks and to use online communication, starting to face the problems of interaction in the World Wide Web.

Group size

The activity should involve the use by the single students of their own personal devices. They would be interacting only on line with the rest of their classmates or other students of the school. So, for this possibility of wide connections with other remote users, it’s difficult to identify a size for the group that it’s possible to involve in such activity.

Materials required

The social network simulator requires a specific technological environment: it could be applied in a computer room, equipped with PC desktops, laptops or tablets. It is necessary to be supported by the development of a web

References

application operating in a specific web space, like in the Italian best practice Social4School project.

Instructions for teacher

Teachers can find the link of the Social4School project and social network simulator at the following link: https://www.social4school.eu/

In order to use the platform, the teachers (or the school) will need to register on the platform, obtaining a code that can be used by the pupils to access the platform, create their avatar and play.

This simulation of a social network in the class/school can offer to teachers a practical tool for:

- creating a personal profile for each student which reflects their own identity (with a name and a personalized avatar);
- interacting through writing and reading, participating in a real social session where the students post sentences in a gaming situation;
- controlling and monitoring personal attitudes or social issues in each student;
- studying and analysing the quality of the relationship of the group/class;
- teaching digital responsible citizenship skills and competencies.

The teacher has, then, a complete tool that can be used in different ways, in classes that go from a minimum of six students to an indefinite maximum, and that can be a stimulus for deeper discussions on the meaning of privacy in the web.

Expected outcome of the method

The main expected outcome of the application of this idea is the improvement of perception and rising awareness among students of primary schools of the proper personal and other people’s privacy in the web, particularly in the social networks online.

Another important result would be the experimentation of a participative and interactive approach to face in an effective way the problem of the education to the digital citizenship and, particularly, to the use of the social networks in the respect of the privacy.
Activity

Name: Immersive didactic/Massive Multiplayer Online World

Description of innovative teaching idea/method:

"Immersive didactic" is a method of teaching that uses technology and, especially, the virtual reality.

Massively multiplayer online world (MMOW) is a simulated environment, populated by many other users which can create a personal avatar and simultaneously explore the virtual world, participating in its activities and communicating with others. These avatars can be bi or tri-dimensional textual or graphic representations.

The user can manipulate the elements of this world and experiment a certain degree of presence. These environments and their rules can be inspired by worlds of imagination or the reality. Examples of the rules are: the gravity, the topography, actions in real time and communication. The communication among users can be textual, vocal, gestural and tactile.

Target age: In Italy, virtual reality was experimented in some primary school as a tool for teaching particular STEM disciplines (i.e. Primary School “Cantore” of Genova) as first best practice of this didactical experience, obtaining good results among younger students.

Group size: The activity aims to guide single students to personally experience the virtual world using their own senses, but, as the virtual world is itself a shared dimension, it requests a moment of interaction with the other classmates, in order to decide how to modify together some social or natural aspects of the common environment. It could request a phase of small group discussion of different aspects in order to decide how to act in the social space.

Materials required: The implementation of this activity in the class context requests a high and updated level of technological equipment in the school (i.e. visors, possibility...
| Instructions for teacher | The immersive didactics and methods offer to the teachers an opportunity to innovate the process of learning in a creative way. In fact, inside an immersive world it is possible to integrate pedagogic practices that can answer to a clear evaluation, to improve the levels of attention, to encourage inclusion, to favour positive states of mind, to offer opportunities for learning and generate the ability to translate competences in elements of knowledge.

In Italy, immersive didactic has been promoted by the platforms Edmondo (INDIRE) and MinecraftEdu.

Regarding Edmondo, teachers can find the homepage of the platform at the following link: http://edmondo.indire.it/

Here, teachers and students can register and play. Teachers can also find training possibility on the use of the platform, and on the educational outcomes that can be achieved through immersive didactic.

At the following link, teachers can find the homepage of the MinecraftEdu platform, containing all the direction for use and application in school: https://education.minecraft.net |

| Expected outcome of the method | The immersive reality can allow the students to put in practice and to document the learning activities, dealing with a technological reality, which is more familiar to them. The challenges and the opportunities offered by the immersion in a virtual or augmented reality can stimulate their dedication, spurring them to operate problem solving to find meaningful solutions and to increase their competences. |
The immersive didactics allow to build the meaning of the experiences, favouring interconnections, creative abilities, interaction and inclusiveness.

References

- Edmondo INDIRE http://edmondo.indire.it/
- MinecraftEdu https://education.minecraft.net/

Open Simulator platform http://opensimulator.org/wiki/Main_Page

Methods for Digital Content Creation

<table>
<thead>
<tr>
<th>Activity Name</th>
<th>Creative literacy through Scratch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>Scratch enables students to develop digital literacy based on ISTE’s achievement indicators (2016). Students will create a story of their choice, write the narration of it and then animate it. They will need to animate their whole story and include different voices or alter their own voice for the characters. When all stories are completed, the teacher can decide on a movie day where students can watch their movies.</td>
</tr>
<tr>
<td>Target age</td>
<td>7-11</td>
</tr>
<tr>
<td>Group size</td>
<td>Group of 2-3 students</td>
</tr>
<tr>
<td>Materials required</td>
<td>Scratch programming platform, PCs, video projector, handouts, internet connection.</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>When students build their stories in Scratch, their work aligns ISTE’s definition of computational thinking. With Scratch, students:</td>
</tr>
<tr>
<td></td>
<td>• Formulate a problem as they determine how to use the elements in Scratch to construct their story.</td>
</tr>
<tr>
<td></td>
<td>• Organise and analyse data by creating blocks of code to create characters and design settings.</td>
</tr>
<tr>
<td></td>
<td>• Represent the data (story content) through the movement of the characters in Scratch (sprites). The source of sprites can be from Scratch’s extensive library or an online drawing program within Scratch.</td>
</tr>
<tr>
<td></td>
<td>• Use algorithmic thinking as they create code to make sprites move and communicate.</td>
</tr>
<tr>
<td></td>
<td>• Identify, analyse, and implement solutions in the ordered steps they created to make the program work as they envision.</td>
</tr>
</tbody>
</table>
Transfer this problem-solving process to other situations as they tackle more complex animation challenges within Scratch and elsewhere in their lives.

Based on ISTE's Achievement Indicators for Digital Literacy the seven profiles are: Empowered Learner, Digital Citizen, Knowledge Constructor, Innovative Designer, Computational Thinker, Creative Communicator, and Global Collaborator.

Coding, tinkering and making in the era of IoT (Internet of Things)

STEM is a curriculum based interdisciplinary applied approach which stands for Science, Technology, Engineering, and Mathematics. STEM-based curriculum encompasses real-life situations to educate students in the four specific disciplines. STEM integration refers to “students participating in engineering design as a means to develop relevant technologies that require meaningful learning through integration and application of mathematics and/or science (Moore & Smith, 2014).” STEAM which encompasses A from Arts, is an educational approach to learning that uses Science, Technology, Engineering, the Arts and Mathematics as access points for guiding student inquiry, dialogue, and critical thinking. According to Merrill (2009), STEM teaching and learning focuses on authentic content and problems, using hands-on, technological tools, equipment, and procedures in innovative ways”. STEM helps students to undertake authentic investigations in formal and non-formal learning settings. The project builds on established theories of learning, namely Papert's constructionism. Resting on this foundation, coding, tinkering and making have emerged as engaging entry points and activities for STEM education.

Target age 10-12

Group size Any

Materials required Raspberry Pi, Arduino boards, sensors and actuators, robot construction toolkits, PCs.
Instructions for teacher

- Teachers create a number of scenarios
- Each scenario will address at least one type of new generation of inexpensive technologies in the era of IoT, e.g., Raspberry Pi, Arduino boards, sensors and actuators etc.
- At least 2 scenarios will address formal STEM learning.
- Preference will be given to scenarios which address collaborative learning linked to the social and cultural practices and contexts in which people participate through shared activity (e.g. Lave & Wenger, 1991; Gutierrez & Rogoff, 2003).

Davis and Krajcik (2005) nine heuristics for the design of educative materials support teachers in:
1. engaging students with topic-specific scientific phenomena
2. using instructional representations that support student understanding
3. anticipating, understanding, and dealing with students’ ideas about science
4. engaging students in questions
5. engaging students with collecting and analysing data
6. engaging students in designing investigations
7. engaging students in making explanations based on evidence
8. promoting scientific communication
9. promoting the development of teachers’ subject matter knowledge

Expected outcome of the method

Coding, tinkering, making (Honey & Kanter, 2013; Hatch, 2014)

###References

Activity Name: Digital Storytelling

Description of innovative teaching idea/method

Storytelling is a very important tool in all levels of education, as it seems to increase children’s oral and writing skills, while at the same time it strengthens critical thinking skills, analysis and synthesis of information. More specifically, narration (including creating and listening and comprehending a story) leads pupils to practice advanced communication skills and information processing. Narration also supports effectively the transmission of ideas, knowledge, values and attitudes and helps people make decisions about life based on the examples of the heroes.

Target age

any
<table>
<thead>
<tr>
<th>Group size</th>
<th>any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials required</td>
<td>PC, digital story creation tools such as Storybird, Lego Comic Builder, Camtasia Studio.</td>
</tr>
</tbody>
</table>
| Instructions for teacher | The steps to be followed for the creation of digital narratives are the following:
 o Writing: Includes the story creation and its' continuous improvement. The writing should follow basic rules of storytelling.
 o Screenplay: After story writing, writers must isolate the different snapshots of the story in order to choose how they will enrich their story using multimedia.
 o Illustrated script"storyboard": this stage involves decision-making about how to visualize the story (heroes, objects and sceneries).
 o Multimedia: this stage involves identifying and adding multimedia to the story.
 o Digital storytelling creation: in this stage, the writer uses a suitable tool to compose the digital narration.
 o Publication: this stage involves the presentation of story and its dissemination in the education community or on the Internet. |
| Expected outcome of the method | “A number of studies have revealed that adopting digital storytelling not only helps bridge the high-tech world outside the classroom and traditionally low-tech setting, but also motivates students to learn through the creation of personal stories [...] Digital storytelling provides an opportunity for students to solve problems and gain competence with technology through practice and experimentation [...] Digital storytelling enables students to develop digital literacy through the use of technological tools in the video production process.” (Chan, et. al., 2017) |
Methods for Problem-solving

<table>
<thead>
<tr>
<th>Activity Name:</th>
<th>Using Educational Robotics to enhance students creative thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>Educational Robotics is a growing field with numerous researchers to have endorsed Robotics as educational tools (Frangou et al, 2008; Glăveanu, 2010). Educational robotics are increasingly integrated in education as knowledge modelling tools. Learning with robots help students to obtain knowledge and acquire 21st century skills such as collaboration, critical thinking, creativity and communication (Eguichi, 2014; Breuch & Fislake, 2018). Previous studies integrated robotics as an effective teaching method in the educational processes. Creativity in educational robotics has been associated with the processes of building and programming (Zawieska & Duffy, 2015). One of the greater values of educational robotics relies on its potential to inspire curiosity and creativity in students (Breuch & Fislake, 2018). Creativity in educational robotics has been related with the constructionist learning approach and the processes of building, programming and manipulating robotic platforms (Zawieska & Duffy, 2015; Breuch & Fislake, 2018).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target age</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group size</td>
<td>Any</td>
</tr>
<tr>
<td>Materials required</td>
<td>Lego Mindstorms NXT, Lego Mindstorms EV3, Lego WeDo 1.0, Lego WeDo 2.0, PCs, Internet connection, Lego Mindstorms</td>
</tr>
</tbody>
</table>

Instructions for teacher
- Engage students in hands-on, technology-based as well as unplugged activities related to robotics, based on the grounds of gamification, project, problem and inquiry-based learning.
- Include presentations, educational games, documentary, rich audiovisual material, hands-on activities, technology-based (educational software & simulations as well as unplugged activities, interactive activities (building & developing robots).
- Divide lessons into several small tasks, giving students a sense of progress, and essentially gamifying the learning experience.
- Familiarise students with the robots and introduce them to basic programming concepts.
- Encourage students to use their creativity and communicate ideas with other student to find possible solutions.
- Introduce gradually, different concepts from mathematics and science are introduced and incorporated in lessons.
• During the programming interventions students master high level programming concepts.

Expected outcome of the method

Creativity process with productive outcomes such as: students will build a robot that creates different drawings or play modes. Learners will engage in a collaborative and creative approach, integrating complex-activities which require high cognitive skills such as problem-solving skills, creative thinking skills and computational thinking for students of all ages.

References

<table>
<thead>
<tr>
<th>Activity Name</th>
<th>Augmented Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>Augmented reality is the integration of digital information with the user's environment in real time. Augmented Reality uses the existing environment and integrates new digital information onto it. The content can be accessed with a device such as a mobile phone that scans an image and reveals the digital material. This material can be a video, a different image, a 3D animation, games and much more.</td>
</tr>
<tr>
<td>Target age</td>
<td>10-12</td>
</tr>
<tr>
<td>Group size</td>
<td>Any</td>
</tr>
<tr>
<td>Materials required</td>
<td>AURASMA software (https://www.aurasma.com/), QR-Code reader, smartphones / tablets, PCs, pictures</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>Many innovative teaching ideas can be implemented using augmented reality software. For example, teacher can hide a clue for a puzzle in a picture or in a QR code. Pupils trying to solve the puzzle, scan the picture or the QR code with their tablets or their mobile phones and a video created by the teacher appears which offers them the clue. Also, in school entrance visitors can scan pictures and reveal some digital content. Moreover, pupils can create augmented reality content, which might include personal videos or devise some kind of exploration game.</td>
</tr>
<tr>
<td>Expected outcome of the method</td>
<td>The incorporation of augmented reality in educational process can help teachers to actively involve students in the learning process and to motivate them. Participation in the process of creating augmented reality objects constitutes the educational process more attractive, increases students' attention and helps pupils understand concepts. In addition, it is a different way of understanding the world and can be exploited with success in different pedagogical approaches.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity Name</th>
<th>Online Educational Escape Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>Escape rooms have become increasingly popular in recent years as an innovative teaching practice. They encourage teachers to plan out challenge-based learning scenarios, which encourage learners to develop skills in critical</td>
</tr>
</tbody>
</table>

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. [Project number: 2017-1-CY01-KA201-020796]
<table>
<thead>
<tr>
<th>thinking, collaboration, communication, team work and deductive reasoning. These typically take place in the classroom; however, with open source software like Kahoot! and other programmes available to learners, it is possible for teachers to create online games and puzzles and encourage learners to work in teams to find the answers to these puzzles - thus creating a type of online educational escape room.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target age</td>
</tr>
<tr>
<td>Group size</td>
</tr>
<tr>
<td>Materials required</td>
</tr>
<tr>
<td>Instructions for teacher</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Expected outcome of the method</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>
- Kahoot! – How to Play: https://kahoot.com/what-is-kahoot/

<table>
<thead>
<tr>
<th>Activity Name:</th>
<th>Web-Quest Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of innovative teaching idea/method</td>
<td>Web-Quests are enquiry-based learning activities where all of the materials, sources and content which learners need to complete their challenge can be found online. In Web-Quest challenges, the teacher creates a scenario or task for the students to research online. In this activity, students develop their ability in collaborative and also autonomous learning, and the teachers takes on the role as a facilitator of learning.</td>
</tr>
<tr>
<td>Target age</td>
<td>10-12 years</td>
</tr>
<tr>
<td>Group size</td>
<td>Students should work in groups of 3-4</td>
</tr>
<tr>
<td>Materials required</td>
<td>Access to smart devices, PCs or laptops for all groups; a web quest scenario with instructions for groups to complete the challenge - this can be written on paper or presented on a PowerPoint slide for the students - web quests do not have to be presented online for the purpose of this activity.</td>
</tr>
</tbody>
</table>
| Instructions for teacher | The teacher should follow these steps:
 - To develop a web quest, the teacher should brainstorm a topic that they would like their students to complete autonomous research on to support and enhance their learning.
 - Depending on the curriculum subject being taught, this could be a social issue, event in history, environmental challenge, scientific concept, famous author or poet, etc.
 - The teacher should then develop a handout or PPT slide which present the challenge to learners in the following stages:
 1. Introduction - here the teacher provides the context for why this topic will be explored - if the teacher has decided to pick a social issue or environmental challenge for this activity, in this section the teacher introduces what it is, why it’s important, what impact it is having on us now, and what potential impact it will have in the future, for example. |
2. Task - next the teacher describes the task that the student will work in teams to complete. For example, if using the example of an environmental challenge, this might include that there is a surplus of plastic in the Mediterranean, and you and your team are tasked with finding an innovative solution that will help to reduce the amount of plastic and improve the ecosystem for fish and marine plant life.

3. Process - here the teacher gives some general instructions for how the students will go about completing this challenge and generating a solution to this problem. Here the teacher can include advice on how the students should research plastic pollution in the oceans around the world what other governments and NGOs are doing to tackle the issue, what supports and grants are available, how to develop a campaign, etc. This is essentially the step where the students collaborate together to generate new ideas and to complete their online research.

4. Presentation - the final step is for each group to present their idea or solution to the whole class group; and for groups to vote on which idea is best.

Expected outcome of the method

This is an example of active learning where students will deepen their understanding of a topic, while also practicing collaboration, negotiation and communication skills, and developing digital and online research skills, critical thinking, creativity and evaluation skills.

References

Chapter 3 - Approaches and methods that connect digital skills with real life issues

In Chapter 3, we aim to present teachers with different approaches and methods which they can use to help connect the digital skills which young students have, and those that they will develop, with real-life issues, such as cultivating and understanding online identity, communication in online environments, personal profiling, etc.; but also soft skills which young people will need to develop so as to be competent learners in the 21st century. These soft skills include critical thinking, analyzing and synthesizing information, creativity, collaboration, problem-solving and negotiation. The following approaches can be adapted to suit a range of educational environments and can be practiced across different curriculum areas so as to enhance how digital education is taught in primary schools.

Catalogue of teaching methods and approaches

The activities and methods contained in the catalogue have been identified by researchers in all project countries through desk-research activities and in consultation with primary school teachers. The methods profiled in this chapter specifically refer to the DIGCOMP competence areas of Information and Data Literacy, Communication and Collaboration and Problem-solving.

Methods for Information and Data Literacy

<table>
<thead>
<tr>
<th>Name:</th>
<th>Computational thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of approach/teaching method</td>
<td></td>
</tr>
<tr>
<td>• Computational Thinking (CT) is a thought process (or a human thinking skill) that uses analytic and algorithmic approaches to formulate, analyse and solve problems (EC, 2016).</td>
<td></td>
</tr>
<tr>
<td>• CT has been characterised as a fundamental skill of the 21st century for everybody, not only for computer scientists (Wing, 2010).</td>
<td></td>
</tr>
<tr>
<td>• CT brings problem solving, design and understanding together in a way meaningful to computing (Djurdevic-Pahl, Pahl, Fronza & El Ioini, 2017).</td>
<td></td>
</tr>
<tr>
<td>• CT has been declared as fundamental skills for solving complex problems we encounter every day (Wing, 2006).</td>
<td></td>
</tr>
<tr>
<td>• CT involves solving problems, designing systems, and understanding human behaviour, by drawing on concepts fundamental to Computer Science.</td>
<td></td>
</tr>
</tbody>
</table>
CT and related concepts (e.g. coding, programming, algorithmic thinking) have been promoted by educational stakeholders as skills that are as fundamental for all as numeracy and literacy (Bocconi, 2016).

Computational thinking is a collection of mental tools that enables the individual to solve problems more effectively by thinking like a computer scientist (Wing, 2006).

<table>
<thead>
<tr>
<th>Target age</th>
<th>All grades of primary school (6 - 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group size</td>
<td>Group setting, to aid negotiation</td>
</tr>
<tr>
<td>Materials required</td>
<td>Tools equivalent to students age group. Suggestions:</td>
</tr>
<tr>
<td></td>
<td>From one-dimensional to three-dimensional (1D, 2D, 3D) shapes.</td>
</tr>
<tr>
<td></td>
<td>A range of 'unplugged' approaches and 'plugged' activities as described in the report developed by Ireland’s National Council for Curriculum and Assessment (NCCA, 2016).</td>
</tr>
<tr>
<td></td>
<td>LOGO, LEGO, Turtle, Scratch; tools outlined in a recent study by Hsu, Chang and Hung (2018).</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>Hu (2011) describes the computational thinking elements to consider when integrating computational thinking into the school curriculum. These include: Formulating solutions, algorithm, logic, pattern, simulation, decomposition and abstractions.</td>
</tr>
<tr>
<td></td>
<td>The core CT capabilities that are targeted by the suggested primary schools CT curriculum are as follows.</td>
</tr>
<tr>
<td></td>
<td>abstraction (through arithmetic and spatial coordination),</td>
</tr>
<tr>
<td></td>
<td>logical reasoning (through cryptography, and applied arts, language and nature-based problems)</td>
</tr>
<tr>
<td></td>
<td>patterns (through geometry/symmetry and art)</td>
</tr>
<tr>
<td></td>
<td>decomposition (through spatial coordination)</td>
</tr>
<tr>
<td></td>
<td>algorithms (through cryptography, arithmetic and geometric puzzles)</td>
</tr>
<tr>
<td></td>
<td>coding</td>
</tr>
<tr>
<td></td>
<td>digital Games</td>
</tr>
<tr>
<td></td>
<td>programming robots</td>
</tr>
</tbody>
</table>

Computer programming and coding are part of the computer science curriculum in Cyprus, which is compulsory for students aged 13-16. There is no distinct computer science subject in the primary school curriculum, but computers support other learning.
How will this approach connect digital skills with real-life issues

- Gretter and Yadav (2016) present two approaches to 21st century skills that merge CT with UNESCO’s concept of Media & Information Literacy (MIL) in support of students’ 21st century skills and citizenship.

- The European reference framework for the digital competence of citizens, DigComp (Ferrari, 2013), includes programming.

- The recent update, DigComp 2.0 (Vuorikari et al., 2016), encompasses the main components of Information Literacy and parts of UNESCO's Media & Information Literacy.

Computational thinking improves student’s analytical skills and supports inquiry-based learning at every level. Specifically, CI develops students’ digital skills such as coding, decomposition, algorithmic thinking, and information systems (NCCA, 2016). Some more skills are listed below:

- Spatial Thinking: Breaking a complex problem into smaller, more comprehensible steps
- Creative problem-solving
- Debugging
- Logical thinking
- Conditionals (if this, then that)
- Recognizing patterns

References

Methods for Communication and Collaboration

<table>
<thead>
<tr>
<th>Name:</th>
<th>Game-based learning (GBL)</th>
</tr>
</thead>
</table>
| Description of approach/teaching method | Game-based Learning (GBL) is a method of using games while teaching a subject to achieve a defined set of learning outcomes.
Digital game-based learning is essentially any situation in which digital games are leveraged to support learning (Joung & Byun, 2014).
GBL is similar to Problem Based Learning (PBL), wherein specific problem scenarios are placed within a play framework.
GBL brings intrinsic motivation on by challenges, curiosity, control and fantasy” (Lepper & Cordova, 1992; UNESCO, 2016, pg.15).
Games include many characteristics of problem solving, e.g. an unknown outcome, multiple paths to a goal, construction of a problem context, collaboration in the case of multiple players, and they add the elements of competition and chance (Hsu, Chang & Hung, 2018). |

Game-based teaching and learning features include but are not limited to:
• Competitive exercises which can allow students to challenge themselves to learn better.
• Fantasy element that engages the players in a learning activity through a story line.
• Motivates students to learn and immerses them in the lesson so they can learn more effectively.
• Encourages student to learn from their mistakes. |

Target age | All grades of primary school (6-12) |
Group size | Depending on the game requirements. Preferably students will work cooperatively in small groups. Divide class into 4-5 teams according to the class size. |
Materials required | Variety of game-based platforms, tools. |
Instructions for teacher

Prensky (2001), describes various structural elements of games: (i) games have rules (ii) goals, (iii) outcomes and feedback, (iv) competition or challenge (v) interaction (vi) representation.

Teachers need to consider these when using games in the teaching/learning environment:

- Competitive - Goal to achieve better than other persons
- Difficulty - Presentations of tasks that require effort.
- Exploration - A context-sensitive virtual environment.
- Fantasy - A make believe story or environment.
- Goals - Explicit aims and objectives, with a clear purpose.
- Interaction - Feedback from actions and changing state of play.
 - Outcomes - Measured results from game play, i.e. scoring.
- People - Other individuals playing the game at the same time.
- Rules - Boundaries of play, limitation or constraints.
- Safety - Lacks consequences of the game in the real world.

In order for Game-based Teaching and Learning to be effective is important to integrate games into teaching with a clear pedagogic process. The following should be considered as a guide for teachers:

- Place learning activities and content within the game, maintaining the balance between fun and learning.
- Make the teaching content integral to the game. Content specific tasks work better when embedded in the content and rules of the game.
- Carefully design and plan the rules that both teacher and learner will apply to the game.
- Adjust deliver content that adjusts itself to player knowledge and learning style.
- Teachers should serve as facilitators, fostering learners experience, providing guidance when needed, ensuring that rules are followed reflecting a respectful attitude.

How will this approach connect digital skills with real-life issues

Research suggests that game-based learning encourages participation and learning in STEM subjects (Jackson, 2014). Learning in science, technology, engineering, and mathematics (STEM) disciplines can be addressed real-world context scenarios, thus, enhance students programming and coding skills, problem-solving, critical and computational thinking as well as other 21st century skills.

Reference(s)

<table>
<thead>
<tr>
<th>Name:</th>
<th>The e-Reflect approach (Chelmis & Latzaki, 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of approach/teaching method</td>
<td>Incorporation of digital tools in the traditional Reflect approach. The e-Reflect approach suggests the use of digital tools for collaboration and content creation aiming at social change through empowering and enabling children to participate actively in problem identification, analysis and development of practical solutions to problems.</td>
</tr>
<tr>
<td>Target age</td>
<td>6-12</td>
</tr>
<tr>
<td>Group size</td>
<td>12 - 25</td>
</tr>
<tr>
<td>Materials required</td>
<td>Collaborative and content creation digital tools of teachers’ and pupils’ choice. These can include Google collaborative tools such as Google Documents and Google Draw, digital story-telling platforms such as Storybird and collaborative canvasses such as Lino.it.</td>
</tr>
</tbody>
</table>
| Instructions for teacher | Pupils can make use of the digital tools while they work through the following learning steps:
 Step 1: Pupils explore attitudes and values towards global citizenship
 Step 2: Pupils investigate important issues that affect their lives and choose one that will work
 Step 3: Pupils collect more information on their subject and studying it in depth.
 Step 4: Pupils work out ways of dealing with the problem
 Step 5: Pupils take action while recording their actions and the results of their efforts
 Step 6: Pupils reflect upon their learning experiences and discuss what they can do differently the next time. |
Social and participatory media, online environments and networks provide collaborative, distributed and shared construction of knowledge, opportunities for individual empowerment and active engagement in social and political life. The e-Reflect approach contributes to active citizenship education helping children develop an understanding of:

- the significance of individual and collective action
- their own values and the relationship of these to behaviour and action
- democratic systems and the individual's role within these
- contemporary events and controversial issues
- the causes of social and environmental problems

Name: The Project Method

Description of approach/teaching method	The project method falls into the constructive, discovery and emancipating learning approaches. Howard Gardner (1983), through studying brain functions and structure popularised the diversity of human intelligence and the multiple ways learning corresponds to intelligence multiplicity. The project method, using various software applications and ICT tools, enables a multimodal approach to a given topic, with the simultaneous exploitation of multiple brain functions. Students through interaction with their peers, with their teacher but also with the wider environment manage complex learning projects. In this way, they develop critical thinking and cooperation skills.
Target age	6-12
Group size	Any group size
Materials required	A wide variety of digital tools
Instructions for teacher	The project method includes the following teaching stages:
1st Stage: Exploring existing experience and knowledge of students – framing the subject
Students reflect in many ways their interest in a topic. The teacher assesses what is known and what the children are really |
interested in. He/She sets open-ended questions, asks for clarifications and explores experiences, knowledge and interests of children.

2nd Stage: Search and gathering content from sources – assigning roles and distributing activities.

Children form research groups. Each team member takes over a role. Children discuss their experiences, exchange and manage information, sharing answers. Children *search and collect material*: children explore all relevant sources from the Internet or their own sources (libraries, research centres, interviews with experts).

3rd Stage: implementation of scheduled activities, feedback-topic presentation by the groups

This stage can include free expression activities, constructions, games, communication with specialists, Children paint, write, count, manufacture, store elements, dramatize, experiment and make use of the computer tools.

4th Stage: intra-group and inter-group presentation and evaluation of project and processes

(Matsagouras, 2000)

Intra-group / Inter-group presentation: Each group presents their plan to the other groups. *Evaluation – Submission of the final plan:* Both the plan and the procedures are being assessed and groups submitted their final products.

<table>
<thead>
<tr>
<th>How will this approach connect digital skills with real-life issues</th>
<th>Project based method deals with authentic issues in children’s life and each teaching stage offers the opportunity of using multiple digital tools, which, in the long run, develop pupil’s digital skills.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Story Telling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of approach/teaching method</td>
<td>Applied in pedagogy, Storytelling is an instrument used to widen and deepen the traditional activities of writing and speaking, as well as learning in general. It is a methodology that uses the narration as a mind-created tool to frame the events of reality, and to explain them according to a logic. The action of narration can be represented in various forms (both individually or</td>
</tr>
</tbody>
</table>

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. [Project number: 2017-1-CY01-KA201-025798]
collectively), that connect thought and culture, especially to the person’s emotions. The narrative action organizes the subjective and interpersonal experience; while the narrative discourse makes the critical content elaboration possible. It deals with an "interactive trial", because the narrative discourse makes it possible to give manifold interpretations to each subject coming into contact with a certain history.

<table>
<thead>
<tr>
<th>Target age</th>
<th>Primary school or first grade of secondary school (aged 6-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group size</td>
<td>Classrooms of 15-25 members</td>
</tr>
<tr>
<td>Materials required</td>
<td>Technological equipment in the classroom (LIM, Laptop/PC,)</td>
</tr>
<tr>
<td></td>
<td>Personal devices (smartphone or tablet)</td>
</tr>
<tr>
<td></td>
<td>School website</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>This method foresees the following phases:</td>
</tr>
<tr>
<td>1st phase</td>
<td>design of a cognitive scheme, in which the focus is on the</td>
</tr>
<tr>
<td></td>
<td>predispositions and passions of the pupils. These seem distant</td>
</tr>
<tr>
<td></td>
<td>from the didactic sphere, but they become essential in order</td>
</tr>
<tr>
<td></td>
<td>to explore the inclinations and the preferences of the</td>
</tr>
<tr>
<td></td>
<td>students involved in the various tasks of the process of</td>
</tr>
<tr>
<td></td>
<td>content creation.</td>
</tr>
<tr>
<td>2nd phase</td>
<td>choose the theme, that will develop through the story, and</td>
</tr>
<tr>
<td></td>
<td>that is necessarily connected to the disciplinary context in</td>
</tr>
<tr>
<td></td>
<td>which this methodology is applied.</td>
</tr>
<tr>
<td>3rd phase</td>
<td>the teacher divides the class group, that will be managed as</td>
</tr>
<tr>
<td></td>
<td>a working-team in which a reference person or leader should</td>
</tr>
<tr>
<td></td>
<td>be appointed.</td>
</tr>
<tr>
<td>4th phase</td>
<td>this phase is dedicated to interviews and/or research of</td>
</tr>
<tr>
<td></td>
<td>sources on the web, followed by the collation of the contents</td>
</tr>
<tr>
<td></td>
<td>managed and shared by the groups.</td>
</tr>
<tr>
<td>5th phase</td>
<td>elaboration and publication of the content found during the</td>
</tr>
<tr>
<td></td>
<td>previous phase, which can be done through a blog managed by</td>
</tr>
<tr>
<td></td>
<td>the class, or through external contents on the website of the</td>
</tr>
<tr>
<td></td>
<td>school. The methodology may require the realization of</td>
</tr>
<tr>
<td></td>
<td>textual contents, video and photos and graphics.</td>
</tr>
<tr>
<td>How will this approach</td>
<td>The principal objective of story-telling is the autobiographical narration (telling about oneself), as a mean of amplification of the voice of a community.</td>
</tr>
<tr>
<td>connect digital skills</td>
<td>With the diffusion of technologies and technological tools, Storytelling is today an instrument through which teachers can transmit or explain more effectively</td>
</tr>
</tbody>
</table>
Contents or concepts with the use of narrations, metaphors or by connecting to real-life facts and situations, exploiting in a synergic way a web-based technology, combining images (fixed or in movement), a narration (recorded or written), the voice and a soundtrack (simple sounds or music) with elements of the narrative project and composition, with the final aim to elaborate a public presentation.

References

<table>
<thead>
<tr>
<th>Name:</th>
<th>Collaborative Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of approach/teaching method</td>
<td>Collaborative learning is a form of active learning, which involves a minimum of two students working together to develop their learning. It teaches the students key skills of negotiation, critical thinking, problem-solving and flexibility; while also encouraging them to develop their competence as autonomous learners.</td>
</tr>
<tr>
<td>Target age</td>
<td>10-12 years</td>
</tr>
<tr>
<td>Group size</td>
<td>Group size should be kept to between 2-4 students, especially when collaborative learning is being practiced for the first time - it is best to keep the groups smaller.</td>
</tr>
<tr>
<td>Materials required</td>
<td>Access to tablets or smart devices for all groups.</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>The teacher should follow these steps:</td>
</tr>
<tr>
<td></td>
<td>• Before beginning a collaborative learning approach, the teacher should prepare the learners by setting ground rules for the group collaboration - such as showing respect to others, listening when others are speaking, etc.</td>
</tr>
<tr>
<td></td>
<td>• The teacher should form smaller groups (of between 2 and 4 students).</td>
</tr>
</tbody>
</table>
| | • The teacher then assigns a task to each group. It could be to complete research and find out information about a historical event, or to develop something completely new like a new product idea that
could be marketed to students in the school - regardless of the topic, the teacher assigns a task.

- The teacher then encourages students to work together to complete the assignment.
- After 20 minutes, each group should present their findings from their collaborative work to the whole class.

How will this approach connect digital skills with real-life issues

The world is moving towards a more collaborative style of work and education, even in early years, needs to catch-up to this new trend in order to prepare learners with the soft skills that they will need for the future. Collaborative learning works best when technology is integrated, through group work tasks, project work and online research into curriculum topics. As such, students can work collaboratively to apply these digital skills, while at the same time building the soft skills they need for the future, such as decision-making, flexibility, critical thinking and problem-solving.

References

Name: Play-centred Learning

Description of approach/teaching method

Younger children are naturally motivated to play. As such, many programmes for junior cycle primary students are being adapted to encourage students to exploit this motivation, and to learn through play. The idea behind play-centred learning is to encourage children to learn by discovering, exploring, creating and imagining the world around them. This can also be applied to activities where children can apply digital skills through their exploration of the world.

Target age

6-8 years

Group size

10 to 15 students

Materials required

Access to tablets or smart devices for all children so that they can play on their own or in pairs, and engage in exploration of concepts and topic.
Instructions for teacher

A play-centred approach to learning sees the teacher having a new role in the classroom. Play-based learning is driven by the students, with support from the teacher. In this method the teacher should follow these steps:

- The teacher sets up a situation where the children are playing - in this context it could be a digital game.
- The teacher then encourages students to stretch their thinking to explore new ideas and concepts by posing questions and encouraging students’ curiosity and imagination. For example, while students are playing a digital game or solving a puzzle, the teacher can pose questions about problem-solving, risk-taking, probability and/or prediction. In this way the children engage with these higher thinking concepts, through the medium of a game they are playing.

How will this approach connect digital skills with real-life issues

Play-centred learning stimulates young learners’ curiosity, imagination and ability to explore higher thinking concepts. This method also develops young learners’ ability to focus and concentrate on a task. Furthermore, this method has been shown to develop key skills in young learners which are deemed to be essential for 21st century learners and workers - these include: collaboration, problem-solving, critical thinking, analysing and synthesising information and creativity.

References

Methods for Problem-solving

<table>
<thead>
<tr>
<th>Name: Web quest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of approach/teaching method: WebQuest is an inquiry-oriented lesson format in which searching for information and resources through the web plays a key role for accomplishing a given task or solving a problem.</td>
</tr>
<tr>
<td>Target age</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Group size</td>
</tr>
<tr>
<td>Materials required</td>
</tr>
</tbody>
</table>
| **Instruction for teacher** | The WebQuest teaching scenario includes the following structural elements:
 • **Introduction**: Introduces the concept of a scenario/challenge in an original way. A basic question is stated around which the entire WebQuest scenario evolves.
 • **Task or Mission or purpose**: Describes the role of pupils in the scenario/challenge and defines the tasks. Pupils are notified about the final product of the WebQuest.
 • **Process**: Presents step-by-step all processes and activities pupils need to undertake in order to complete their investigation.
 • **Evaluation**: Clearly describes students’ evaluation on the basis of specific criteria.
 • **Conclusion**: This section includes summary of learning experience, allows for reflection on the process, and sets open questions for new investigations.
 • **Instructor’s page**: This addresses teachers and contains instructions for handling the learning process. Includes themes, tips and instructions for the implementation of the scenario, correlation with the Curriculum and tips for objectives evaluation. |
<p>| How will this approach connect digital skills with real-life issues | Actually pupils engage in an internet research trying to solve a "real world" dilemma or task. According to Thaver et. al. (2003) WebQuest “involves the dynamic construction and meaning-making of real-world problems, framed within the context of interdisciplinary and collaborative learning communities.” |</p>
<table>
<thead>
<tr>
<th>Name:</th>
<th>Tinkering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of approach/teaching method</td>
<td>Tinkering is an innovative approach, deemed by the National Plan for Digital School PNSD as an important tool for the development of the competences of the 21st century in the teaching of the STEM subjects. Tinkering is recognised as a form of informal learning by doing, where the students are encouraged to experiment, and their attitude towards problem-solving is stimulated. All the activities will be presented as a game or a challenge, and will be realized in working groups. The principal activities presented are those of: building or breaking up objects; constructing a moving machine; exploring material or mechanical elements; creating artificial original objects or chain reactions. Tinkering is a creative training activity for aspirant makers, that teaches to “think with the hands”, an educational method to interest children in the study of the STEM subjects (Sciences, Technology, Engineering, Mathematics), in a practical and playful way.</td>
</tr>
<tr>
<td>Target age</td>
<td>With tinkering, young children or teen-agers will approach disciplines such as art, science and technology without the stress of memorizing theoretical concepts. This method is suitable and successful especially with children in primary school, and in Italy it has been successfully implemented in maternal schools as well.</td>
</tr>
<tr>
<td>Group size</td>
<td>Class groups of students in primary school, or in the first grade of secondary school</td>
</tr>
<tr>
<td>Materials required</td>
<td>The purpose of tinkering is to realize objects of various kind, using recyclable materials easy to find at home, such as boxes, glasses, sheets of paper, wood pieces, metallic threads, plastic wraps, which are some of the "ingredients" that serve for the work. Some of the things that can be built are: small robots, mechanical toys, chain reaction mechanisms, sculptures.</td>
</tr>
<tr>
<td>Instructions for teacher</td>
<td>Tinkering is a resource for teachers that develops an environment that valorises learning by doing. With the appropriate activity, infrastructures and tools to support the experience, tinkering provides the pupils with a system of acquisition through practice of a variety of skills and mind-sets, that not only engage with them, but also prepare them for life and work in the real world.</td>
</tr>
</tbody>
</table>
Tinkering can also create a differentiated environment, that nurtures diverse learning styles. Working in teams reinforces, on one hand, the value of group work, and, on the other, allows the teacher to assign individual tasks, that agree with individual students’ abilities.

Those students with basic knowledge of tinkering can be tasked to use some objects or materials to achieve a desired result, while other students with less experience may be better suited to develop other aspects of the project, such as design or written documentation. This type of learning environment provides multiple pathways for participation and for success.

With tinkering, students receive an open-ended opportunity to conduct research, develop empathy, create questions, wonder, and use their own motivation to engage in the learning experience. These help to ensure that students are better engaged in the project.

Since the student’s interest is the key driver for maintaining an active engagement in the teaching/learning process, tinkering fosters an ongoing working partnership between the teacher and the student in an array of settings. For example, they both can have a role in identifying topics of interest, doing research, developing concepts and testing new ideas.

At the following link, teachers can find an online guide to tinkering, that explains in detail how to apply this method to teaching STEM subjects and guides them through the creation of lesson plans:

https://ec.europa.eu/epale/it/node/40449

Learning environments that include tinkering and crafting require students to develop those dispositions of the designer and the innovator, and build their personality to be confident and competent in choosing the right tools for the real problems.
In order for the students to search and find solutions to unknown problems, they need to be prepared to encounter and use unusual tools, including new technologies, and to approach as a stimulating challenge something they meet for the first time. Tinkering and crafting can be the opportunity to experiment failure, and internalize it as a moment of self-assessment, instead of seeing it as the end of their activity. Learning how to use new crafting tools develops grit and perseverance; students should be flexible and resourceful when there are no instructions available, or these do not match with precision the problem addressed.

References

Chapter 4 - Best Practices: Digital resources and tools to enhance how digital literacy and citizenship is taught in schools

In Chapter 4, we present you with a sample of some of the digital resources, tools, programmes and practices that were identified during the research conducted by partners to develop a Pedagogical Framework for the development of e-Toolkit on Digital Citizenship. (IO2). In developing this previous project output, partners undertook research to identify suitable examples of best practice in developing digital literacies of primary school students. Some of these tools and resources link directly to the innovative methodologies that were mentioned in previous chapter, like exploring computational thinking techniques in the classroom, for example. These specific examples were chosen because they relate directly to the topics of digital literacy and citizenship. In the following tables, teachers are coached and advised how best to adapt these resources and apply them in the classroom.
Catalogue of best practices for digital literacy and citizenship

The content for this Catalogue is taken directly from the Pedagogical Framework for the development of e-Toolkit on Digital Citizenship (IO2). This catalogue provides a summary of some of the tools featured in the Framework. They were selected for inclusion in this Guide, because they relate directly to the competence areas of: as referenced in the DIGCOMP Framework.

Tools related to Information and Data Literacy

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>USE OF ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/ TOOL</td>
<td>PENSIERO COMPUTAZIONALE: una guida per insegnanti / Computational thinking: a guide for teachers</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Computing at School association (CAS)</td>
</tr>
<tr>
<td></td>
<td>Institute for Didactical Technologies of National Research Council (ITD – CNR)</td>
</tr>
<tr>
<td>DATE</td>
<td>2015</td>
</tr>
</tbody>
</table>
| SOURCE | Computational Thinking a Guide for Teachers (CAS)
| | Italian version (ITD – CNR)
http://pensierocomputazionale.itd.cnr.it/pluginfile.php/957/mod_page/content/7/Guida%20al%20Pensiero%20Computazionale.pdf |
| | Italian web on Computational Thinking resources (Programmare per apprendere project)
http://pensierocomputazionale.itd.cnr.it/
http://pensierocomputazionale.itd.cnr.it/mod/page/view.php?id=85 |
| DESCRIPTION | The National Plan for Digital School intend promote an appropriate education to the "computational thinking", that goes beyond the initial digital literacy acquired formation. It is in fact essential so that the new generations are able to face not the society of the future from passive and unaware consumers of technologies and... |
services, but from subjects aware of all the aspects in game and as actors you actively participate of their development. The association Computing At School (CAS), composed by teachers and English researchers, has produced an useful guide for teachers on computational thinking that was translated in Italian version adapting it to the national context. The translation in Italian of the Guide is part of a general activity of Institute for Didactical Technologies of National Research Council (ITD – CNR) with a related research project "Programmare per apprendere", with the aim to create a real synergy between educational research and activities of teaching / learning in the classroom to define and to experiment vertical educational paths in order to promote the "computational thinking" starting from primary school.

MAIN AFFORDANCES

The proposed methodological approach foresees the followings three qualifying points:

- to make to work the pupils on plans meaningful (for contents, concepts and complexity);
- to encourage them to experiment and to learn from the errors;
- to promote the collaborative working and the sharing of experiences.

EXAMPLES

Material, resources and examples of activity for teachers are contained in a section of the site "Programmare e imparare con Scratch / Program and Learn with Scratch (http://pensierocomputazionale.itd.cnr.it / course / view.php?id=6) The section "Computational Thinking" http://pensierocomputazionale.itd.cnr.it / mod / page / view.php?id =85 of the website site of the ITD CNR contains all the available resources for the teachers for the formation and the use of the computational thinking in class.

TOPIC

Use of ICT

TITLE OF RESEARCH/ TOOL

Essediquadro

AUTHOR(S)

Institute for Didactical Technologies of National Research Council (ITD – CNR)

DATE

2003-on going

SOURCE

http://www.sd2.itd.cnr.it/

DESCRIPTION

Essediquadro is the telematic service of documentation on the available Didactic software and managed by the Institute for Didactical Technologies of National Research Council (ITD – CNR) in partnership with the MIUR (Office of the education, of the Ministry of University and Research). Born on the base of the experience conducted beginning from 1985 with the Library for the Didactic Software, Essediquadro offers a large documentation on the digital resources for the education today available on the national and international market. Available informations are organised so that to furnish a
Starting from 2003, Essediquadro has begun a job of recognition, technical evaluation, analysis of the didactic characteristics and software usable Open Source to educational purpose. The products that overcome the tests of technical functionality and didactic usability are equipped of ample documentation and I directly made subsequently through the site available Essediquadro.

The software Open Source is integral part of a Database of didactic Software continuously increasing and represents an enjoyable free service, mainly directed to the needs of the teachers in service and in formation. Essediquadro allows to enter to a complete documentation on the didactic characteristics and techniques of over 4000 products usable as didactical software, but it is also a tool through which the teachers can inquire and to be informed on as the software can effectively be used in the school.

The system offers in fact also a series of analysis related to the available software in various disciplinary sectors, proposed of “didactical paths” that contemplate the software use, a documentation of the more meaningful didactic experiences and a distance consulting service.

MAIN AFFORDANCES

Main affordances for teachers offered by ESSEDIQADRO:

- Promotion among teachers and orientation to the didactic software use
- Possibility to explore and use functional products for didactical activities
- Knowing experiences of use behaviours in real scholastic contexts
- Updating teachers on the theme didactic software Essediquadro also offers distance consultation (sd2@itd.cnr.it) and it makes a forum available to discuss on thematic connected with the software didactic use (http://sd2.itd.ge.cnr.it/phpBB / index.php).
- Realisation of training events finalised to the updating of the teachers on her characteristics, the possibilities and the formalities of use of the digital resources.

EXAMPLES

Didactical software Database of open source software
https://sd2.itd.cnr.it/?r=site/ricerca

In-depth documents
https://sd2.itd.cnr.it/?r=site/approfondimenti

A series of in depth documents on the use of the digital (didactic resources, sectors’ analysis, experiences and elements for reflection or debates) resources

Training
https://sd2.itd.cnr.it/?r=site/formazione

A harvest of proposals training courses for the updating of the teachers on the themes Technologies and inclusion.
During 2006, within the action 'Accessibility of the didactic software' of the project MIUR "New technologies and disabilities", a methodology of evaluation of the software has been studied that has contributed to enrich and to integrate the already present data of around 250 examples. Such information are available in the bank you date, selecting "Focus disability" among the search keys.

Tools Related to Communication and Collaboration

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Use of ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/ TOOL</td>
<td>Digital poster creation cooperation tool</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Agiomavritis, M.</td>
</tr>
<tr>
<td>DATE</td>
<td>November 2015</td>
</tr>
<tr>
<td></td>
<td>http://padlet.com</td>
</tr>
<tr>
<td></td>
<td>http://www.photovisi.com</td>
</tr>
<tr>
<td></td>
<td>http://www.postermymwall.com</td>
</tr>
<tr>
<td></td>
<td>http://www.picmonkey.com</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Poster creation activity can bring about a number of important educational benefits for students of all grades. One of the major benefits is the development of cooperation skills. However, there are not many platforms that support collaborative digital poster creation, while the available platforms use technologies which gradually cease to be supported by browsers. In this context, a digital poster creation tool has been created for primary and secondary school children, which fully supports collaboration, incorporating the latest Web application development technologies. This system was evaluated by the method of empirical assessment by elementary students with very encouraging results.</td>
</tr>
<tr>
<td>MAIN AFFORDANCES</td>
<td>Key advantages of creating posters within the educational process (O 'Neil & Jenkings, 2012): The posters help students who learn easier watching the information (Visual types) (Summers, 2005). Students show great enthusiasm and active participation (Walker, 2005). Students are provided the opportunity to discuss constructively for their learning (Briggs, 2009). Can be an authentic assessment tool (Summers, 2005).</td>
</tr>
</tbody>
</table>
Students of the fourth grade must be assessed for knowledge gained about Alexander the Great and his life, in the history course. Spyros, a student chose to make a poster, that will include highlights of the life of Alexander the Great and present the information that is learned. Spyros has noticed that does better when the work contains images, audio and video in addition to text. In this way, it seems easier to understand and assimilate information, and can do more work in less time. Also, since he makes several spelling mistakes, he has more confidence when the size of the text he writes is relatively small and has a succinct format. Spyros uses the following platforms to create posters:
http://edu.glogster.com/
http://padlet.com/
http://www.photovisi.com/
http://www.postermywall.com/
http://www.picmonkey.com/

The creation of digital posters is an activity which has many educational benefits for students. These benefits are not limited merely to the fact that posters help students to acquire skills for effective verbal and non-verbal communication, but also on the cultivation of students’ aesthetic, in acquiring skills of cooperation, etc. Also, the posters are used effectively in various stages of education as tools for evaluating the degree of knowledge achievement. Although the pedagogical value of poster creation activities is undeniable, the digital tools available do not always combine those features that impart pedagogical value in the process (i.e. cooperation, usability, simplicity, etc).

Tools related to Safety

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Digital citizenship and online safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/ TOOL</td>
<td>Be Internet Awesome</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Google in partnership with iKeepSafe</td>
</tr>
<tr>
<td>DATE</td>
<td>2017</td>
</tr>
<tr>
<td>SOURCE</td>
<td>https://beinternetawesome.withgoogle.com/en/</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Be Internet Awesome teaches kids the fundamentals of digital citizenship and safety so they can explore the online world with confidence. Interland is an adventure-packed online game that makes learning about digital safety and citizenship interactive and fun—just like the Internet itself. Here, kids will help their fellow Internauts combat badly behaved hackers, phishers, oversharingers,</td>
</tr>
</tbody>
</table>
and bullies by practicing the skills they need to be good digital citizens. The Be Internet Awesome curriculum gives educators the tools and methods they need to teach digital safety fundamentals.

<table>
<thead>
<tr>
<th>MAIN AFFORDANCES</th>
<th>To help kids be safe, confident explorers of the online world.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
<td>https://beinternetawesome.withgoogle.com/en/resources</td>
</tr>
<tr>
<td></td>
<td>https://beinternetawesome.withgoogle.com/en/slides</td>
</tr>
<tr>
<td></td>
<td>https://www.blog.google/technology/families/be-internet-awesome-helping-kids-make-smart-decisions-online/</td>
</tr>
<tr>
<td></td>
<td>https://www.youtube.com/watch?v=1_uHacsxAp4</td>
</tr>
<tr>
<td></td>
<td>https://www.youtube.com/watch?v=i307esUZTSc</td>
</tr>
<tr>
<td>TOPIC</td>
<td>Use of ICT</td>
</tr>
<tr>
<td>TITLE OF RESEARCH/TITLE OF TOOL</td>
<td>Education and new media / Educazione e nuovi media</td>
</tr>
<tr>
<td>TOPIC a)</td>
<td>Diritti e responsabilità verso una cittadinanza digitale. Guida per insegnanti / Rights and responsibilities towards a digital responsibility. Guide for teachers</td>
</tr>
<tr>
<td>TOPIC b)</td>
<td>Guida per genitori / Guide for parents</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Guide for teachers</td>
</tr>
<tr>
<td></td>
<td>Published by Save the Children – Mondadori Education</td>
</tr>
<tr>
<td></td>
<td>Main author: Elisabetta Papuzza</td>
</tr>
<tr>
<td></td>
<td>Co-Authors: Cristiana De Paoli, Mauro Cristoforetti, Maria Elisa Marzotti</td>
</tr>
<tr>
<td></td>
<td>Editor: Walter Nanni (Editor)</td>
</tr>
<tr>
<td></td>
<td>Guide for Parents</td>
</tr>
<tr>
<td></td>
<td>Published by Save the Children – AdiConsum (association of consumers) – Coordinamento Genitori Democratici</td>
</tr>
<tr>
<td></td>
<td>Co-Authors: Elisabetta Papuzza, Adele Rita Medici, Maria Elisa Marzotti, Mario Russo</td>
</tr>
<tr>
<td></td>
<td>Editor: Walter Nanni (Editor)</td>
</tr>
<tr>
<td>DATE a)</td>
<td>2008 b) 2009</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Guide for teachers</td>
</tr>
<tr>
<td></td>
<td>The guide offer to Italian teachers didactic guidelines and practical examples in order to undertake with their own pupils, children and teen-agers, a course</td>
</tr>
</tbody>
</table>
toward the awareness of the own right online in the use of the actual digital technologies, in application of the Convention U.N. on the rights of the infancy and the adolescence (1989).

The intervention is thought for the pupils of the primary (8-10 years) and secondary school of first (11-13 years) and according to degree (two years, 14-15 years).

The manual is divided in three parts:
1. A lecture of the relationship that today's young people have with the New Media and it develop the theme of the responsibility and the safety on line;
2. A proposal for the school an optic of New Media Education: the methodological approach of Save the Children founded on the rights and the used tools;
3. The last part is a real operational-didactic manual, container a series of examples of activities to be brought ahead with the group class.

Guide for parents

This guide is targeted to parents with the aim of furnish them correct informations and practical guidelines for education of their children to a correct use of the new technologies.

The finality is to valorise and promote the potentialities of these new tools in the life of children underlining and evidencing the risks of it. It’s an educational proposal from which parents can draw with clarity the value and specific elements characterising their own role.

The Guides try to analyse needs and motivations that are behind the use of multimedia instruments with the objective to know better because they use them, as they use them and from thing they are able to prevent possible risky behaviours.

Finally it’s proposed an educational model, so that in the use of the new media from children that can develop specific competences (critical sense, autonomous thinking, sense of responsibility, etc.) and act in name of determined values (the respect of itself and of the other persons, of the legality, of the community, etc.).

At the same time the Manual offer some suggestions to help parents to regulate times and ways of use.

The structure of the guide foresees four section principal in base to the same technological tools: cellurals, Internet, TV and video games.

MAIN AFFORDANCES

For teachers:
- promote a responsible behavior in the use of the New Media by young generations;
- to be able to regulate affective dynamics and report them (emotions, motivations, sociability, needs, ..);
- to acquire and develop dynamic cognitive capacities (knowledges and technical competences of the tool);
- to acquire and develop dynamic values and moral and ethical principles that drive the person, as also the ability to assume social responsibility, tied up to
the general maturity of the subject and the development of the sense of citizenship.

For parents:
In an educational poly-centric conception the responsibility of education calls in field different educational agencies (family, school, institutions, associations, civil society etc.), every with a really and specific assignment. These agencies are called to collaborate to a common project, within shared educational functions.

For teachers
In the third section of the manual are proposed various activities: This section they are proposed some activities on the theme of the New Media that you/they can concretely be conducted in class by the teachers, having as general reference the illustrated theoretical-technical model. Such activity was been divided in 3 second typologies that mainly works on:
• the recognition of the emotions (affective level) to make to reflect on the needs, on the motivations, on the representations, on the meaning of certain behaviours, also in base to the context of reference (school, family, etc.);
• the technical knowledge (cognitive level) to furnish notions on the functionality of the tools, on the characteristics of the net, of the media, etc.;
• the values and the matter linked to the rights (civic level) to reflect and to debate on the rights and on the responsibilities in partnership to the needs, to the roles in the society, to the moral principles that the individual and social behaviour directs and on the characteristics of the Digital Citizenship.
• A quarter and last group of activities (evaluation level) is intended as support for the evaluation of the run from the same students.

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>USE OF ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/ TOOL</td>
<td>Guide for Digital Responsible Citizenship / Guida alla cittadinanza digitale consapevole</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Common Sense education in collaboration with Ministry for Instruction University and Research (MIUR)</td>
</tr>
<tr>
<td>DATE</td>
<td>2018</td>
</tr>
<tr>
<td>SOURCE</td>
<td>Website https://programmailfuturo.it/come/cittadinanza-digitale</td>
</tr>
<tr>
<td></td>
<td>PDF document https://programmailfuturo.it/media/docs/cittadinanza-digitale/cittadinanza_digitale_consapevole.pdf</td>
</tr>
<tr>
<td>Scheme</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Schemes for parents | In a dedicated section of the website of *Programma il Futuro* is provided to teachers are contained section there are lessons proposed inside the courses for the primary and secondary school, that illustrate whether to navigate in Internet in aware and sure way. These lessons premise to realise some complete interventions in the classroom on these matters and the page of every lesson permit to download the relative didactic material.
The lessons and the relative video original they are realised by Common Sense Education, with which we have undersigned an accord of collaboration for the adaptation in Italian language of their educational material. |

Main Affordances

- teachers can permit to their students to practice their own citizenship using in critical and aware way the Net and the Media
- students can express and valorise if same use of the technological tools autonomously;
- inform students how to protect them from the dangers present in the Web and the Media (plagiarism, frauds, enticement etc.),
- educate students to respect specific norms (i.e. respect of the privacy, respect and guardianship of the authors’ rights)

Examples

- Examples of learning are contained in specific sections
 My digital urban district: where the pupils learn how they can visit online fantastic places and how to do it in safety, following some fundamental rules.
 https://www.programmailfuturo.it/come/cittadinanza-digitale/il-mio-quartiere-digitale

 Stop and think online: in this video a song underlines the importance to think "from head to fit" to navigate in responsible way in the digital world.
 https://www.programmailfuturo.it/come/cittadinanza-digitale/fermati-e-pensa-online/

 The power of the words: in this lesson the pupils are invited to reflect on the fact that, while they are having a good time on their sites preferred web, they risk to be exposed to messages of other children that can be offensive, violent or vulgar and they learn whether to manage the actions of cyberbullying.
 https://www.programmailfuturo.it/come/cittadinanza-digitale/il-potere-delle-parole/

 Super digital citizen: in this lesson the objective is to teach what it means to act in respectful and responsible way towards our own community, both in the material world and online. In the video combined to the lesson, a superhero
Digital story telling as a problem-solving tool in school context

Fokides, E., Makarouna, F., Saltidou, E.

2017

The difficulties of integrating immigrant pupils in the school environment and bullying situations are two problems frequently encountered by pupils and teachers and have important psychological and social implications. Digital storytelling is an instrument often used in educational practice, with interesting results. The article presents the results of two educational interventions in primary schools of Rhodes, which employed digital storytelling to address the above problems. The key characteristic of the interventions was the active involvement of students in the process, while the researcher held a consultative-auxiliary role. Data were collected with a variety of research tools, to ensure research validity. Data showed that interventions had positive results and helped children deal both with immigrant integration and bullying situations. Educational interventions were kept short still flexible since they did not require special preparations or special equipment. They can be either part of wider educational programmes either self contained actions.

Findings support the idea that digital storytelling can help: (a) immigrant students, giving them the opportunity to express their thoughts and feelings and, thus, adapt more easily and (b) their school-mates to understand the problems of foreigner peers and, thus, change their attitude towards them. Furthermore, the findings of this study support the idea that the intervention helped pupils organise their thoughts about bullying, reflect about the issue and understand its implications. However, it is unclear whether the teaching interventions helped in shaping children attitudes and behaviour. Since digital stories were hypothetical situations, it is unknown how children would react in real-life situations.
<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Use of ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/ TOOL</td>
<td>Elementary students’ difficulties with the SCRATCH programming language</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Nikolos, D., Komis, V.</td>
</tr>
<tr>
<td>DATE</td>
<td>2017</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The paper describes the difficulties 5th graders face when they get involved in an educational scenario for learning programming with the programming language SCRATCH. Some of these difficulties existed in earlier programming languages too, while others appear in recent educational oriented languages. Those difficulties can be categorised into (a) beginner difficulties, (b) difficulties in basic structure “if... then” and (c) difficulties having to do with the new language features of Scratch 2.0. Finally, the paper proposes some solutions for overcoming these difficulties in the context of the educational scenario.</td>
</tr>
</tbody>
</table>
| MAIN AFFORDANCES | The paper suggests the following educational scenario for teaching the SCRATCH language: Lesson 1 – Introduction: Introduction to SCRATCH programming language environment
Lesson 2 – Views: Commands, which manage objects’ appearances.
Lesson 3 – Interaction: Interaction takes place with the command “if ... then”
Lesson 4 – Messages: Send and receive messages for object synchronisation
Lesson 5 – Variables: Setting game score monitoring. Initialising variables
Lesson 6 – Repetition: Repetition of main concepts
Lesson 7 – Creation of new commands: Create processes from existing commands using Turtle geometry.
Lesson 8 – Clones: Developing a game using clones
Lesson 9 – 10 – Game creation: Pupils create their own game |
<p>| EXAMPLES | A list of educational scenarios on teaching with SCRATCH programming language uploaded on Greek Institute of Educational Policy AESOP (Advanced Educational Scenarios Operating Platform) gateway: http://aesop.iep.edu.gr/senaria?search_api_views_fulltext=scratch&sort_by=field_ekp_vathm&sort_order=ASC |</p>
<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Use of ICT 3D Simulation Games</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/TOOL</td>
<td>Exploitation of Electronic Games in Education</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Mourniakis, E</td>
</tr>
<tr>
<td></td>
<td>University of Pireaus</td>
</tr>
<tr>
<td></td>
<td>Department of Digital Systems</td>
</tr>
<tr>
<td></td>
<td>Teaching of technology and digital systems</td>
</tr>
<tr>
<td>DATE</td>
<td>2012</td>
</tr>
<tr>
<td>SOURCE</td>
<td>http://dione.lib.unipi.gr/xmlui/bitstream/handle/unipi/8540/Mournianakis_Emmanouil.pdf?isAllowed=y&sequence=1</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>This is an educational application in 3D virtual environment of Sim Safety: Development of critical thinking of primary education pupils with the teaching technique of SBL Simulation. The purpose of this study is to take full advantage of the 3D virtual environment of Simsafety for educational scenarios orchestrated utilising the educational method SBL simulation (Simulation Based Learning) in order to develop the skills of critical thinking and the safer Internet in primary education. It aims to familiarise students with potential dangers. Players are encouraged to cultivate critical thinking, to reflect, to acquire knowledge and develop skills in general safe use of the internet.</td>
</tr>
<tr>
<td>MAIN AFFORDANCES</td>
<td>Games promote important skills such as safe Internet navigation skills, inquiry and reflection skills. Virtual worlds is an educational tool for the development of critical thinking. Simulations help simplify complex learning situations Virtual / 3D worlds enhance learner motivation</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>http://www.simsafety.eu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Digital competences, ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/TOOL</td>
<td>Ikanos Test (Self-diagnosis test)</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Basque Government</td>
</tr>
<tr>
<td>DATE</td>
<td>2017</td>
</tr>
</tbody>
</table>
DESCRIPTION

Ikanos is a project developed by the Basque Government to contribute to the development of a society that is: Competent, Highly participative and co-responsible, User of advanced and high-impact digital services.

More specifically, the IKANOS Test is an online tool that helps members of the public to make an approximate self-diagnosis of their digital profile, based on the assessment of the following parameters:

- Their potential for developing digital competences, measured through the availability of equipment and an Internet connection, as well as habits with regard to the use they make of the Internet,
- Their training experience in the field of ICTs, with regard to their technological knowledge and certifications held and,
- Their level of digital competence, as a result of measuring the sum of knowledge, skills and attitudes concerning different key components of digital competence.

The questionnaire is based on the European framework of digital competences DIGCOMP and fill out it will only take you twenty-five minutes. This tool provides a personalised appraisal of your digital profile as a citizen based on your responses to the questionnaire you are going to complete now. The questionnaire is structured in 3 theme blocks in which you must self-assess your current personal status with regard to a series of aspects relating to the Information and Communications Technologies (ICTs).

MAIN AFFORDANCES

- Promote the digital empowerment of members of the public and, as a result, the advancement of the digital society in the Basque Country.
- Make the people in the Basque Country aware of the importance of developing digital competences, by giving them an approximate idea of their digital profile.
- Contribute to fostering the dissemination and adoption of the European framework of digital competences.
- Provide a basic element for the future development of a certification tool of digital competences.
- Channel the information gathered in order to determine in an approximate manner the aggregate digital profile of the inhabitants of the Basque Country.
- Publicise the offer of public services (resources, programmes, etc.) to promote the digital competences of the inhabitants of the Basque Country (KZ gunea – network of telecentres, Enpresa Digitala, IT txartela, Barnetegi Teknologiko, etc.).
<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Use of ICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF RESEARCH/ TOOL</td>
<td>NetLogo Modelling Environment</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>Aristotelis Gkiolmas, Anthimos Chalkidis, Maria Papaconstantinou, Zafar Iqbal & Constantine Skordoulis</td>
</tr>
<tr>
<td>DATE</td>
<td>2014</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The Multi-Agent-Based programming, modelling and simulation environment of NetLogo (Wilensky, 1999) has been used extensively during the last fifteen years for educational – among other – purposes. The learning subject, upon interacting with the User’s Interface of NetLogo, can easily study properties of the simulated natural systems, as well as observe the latter’s response, when altering their parameters. In this research, NetLogo was used under the perspective that the learning subject (student or prospective teacher) interacts with the model in a deeper way, obtaining the “role” of an “agent”. This is not achieved by obliging the learner to program (write NetLogo code) but by interviewing them, together with “applying” the choices that he/she makes on the model. The scheme was carried out, as part of a broader research, with interviews, and web-page-like interface menu selections, in a sample of 17 University students in Athens (prospective Primary School teachers) and the results were judged as encouraging. At a further stage, the computers were set as a network, where all the agents performed together. In this way the learners could watch onscreen the overall outcome of their choices and actions on the modelled ecosystem. This seems to open a new – small – area of research in NetLogo educational applications.</td>
</tr>
<tr>
<td>MAIN AFFORDANCES</td>
<td>Make the students conceptualise natural and environmental systems’ models (especially Multi-Agent-based models) from “the inside”, by leading them to understand the behaviour of agents, without introducing them to computer programming. Make the learners capable of building models of natural systems and ecosystems, not “from the scratch”, but by deciding the behaviour of agents, a skill that is crucial for understanding how the modelled systems will behave under different rules. Students might possibly, through the use of simple NetLogo models and their variations, as well as through their navigation in specifically created interfaces, learn how to act and “think” like members of a natural system or ecosystem and thus understand its functions and behaviour.</td>
</tr>
</tbody>
</table>
In a further stage of application, similar to Wilensky’s “HubNet” (Wilensky & Stroup, 1999), it is aimed that each student can move one agent, for example through the use of a joystick, and they altogether watch the results of their combined actions on a NetLogo screen, provided that their computers are networked.

EXAMPLES

- NetLogo. http://ccl.northwestern.edu/netlogo/
- NetLogo Fire model. http://ccl.northwestern.edu/netlogo/models/Fire
- NetLogo Ants model. http://ccl.northwestern.edu/netlogo/models/Ants

For the full suite of best practice examples that were identified by DRC project partners as part of our research activities for IO2, please visit the DRC website (available at: https://digital-citizenship.org/) and access the Pedagogical Framework for the development of e-Toolkit on Digital Citizenship.

Chapter 5 - Summary of research findings from DRC partner countries

Research Findings from Cyprus

Evidence from the Digital Economy and Society Index for Cyprus (DESI, 2018) declares that the enhancement of use of digital technologies is among the 16 initiatives of Digital Strategy (DESI, Country Report, 2018). Cyprus ranks 21st out of the 28 EU Member States in terms of digitisation (DESI, 2018). Henceforth, digital education and digital navigation skills initiatives should be present in Cyprus’ educational context. ICT is currently integrated into the Cypriot primary school curriculum not as a stand-alone separate subject but as an interdisciplinary educational tool embedded in the teaching and learning process of other subjects. The report reviews the background of the current research-desk conducted in relation to the ICT integration in the Cypriot primary schools and tackles the most important findings. The practical part of the report outlines the results of a focus group with 10 teachers on social media as a result of intellectual output 3. The lack of professional development/training, the volume of curriculum we have to cover per subject and teachers’ resistance to change are the main barriers for technology integration in the classroom.

The focus group analysis pointed out the necessity for teachers’ professional development on digital education that will guide digital citizenship programme integration in the school class. The
results underscore teachers need to receive practical hands-on workshops with colleagues, students and parents. These interventions need to continue on a regular basis so as to have a positive effect in a long-term period. In addition, the upcoming digital citizenship guide needs to be accessible and up-to date to its audience in order to become valuable and effective tool. The report shapes teachers’ recommendations and sheds a light for the development of the upcoming outputs of the DRC project.

Research Findings from Greece

ICT education is a separate teaching subject in Greek primary schools (grades 1 through 6) taught 1 hour weekly in all classes. It aims at equipping children with introductory but coherent and comprehensive understanding of basic computer functions. Moreover, the ICT curriculum for the elementary school opts for enhancing learning, developing pupils’ competencies and preparing them for participating in knowledge-based society. The National Curriculum groups learning goals under three pillars: Knowledge and methodology, Cooperation and communication and Science and Technology in everyday life.

According to the Ministry of Education Bulletin (28/12/2016) ICT is a key tool for the transformation of the school, for supporting and enhancing learning and for upgrading educational outcomes. The emerging ICT environments are changing radically the way people access, gather, analyse, illustrate and present information, communicate and cooperate with each other. They shape and define new types of competencies, which students have to develop within their basic studies, in order to be able to use ICT with effective, creative and ethically sound manner. The school must effectively prepare tomorrow’s citizens of the knowledge society, in order to be able to face the challenges and to harness the opportunities of the new era. Taking into account that ICT will continue to grow and penetrate into the social sphere at a growing speed, the teaching of ICT and computer literacy in the elementary school, has to prepare children to harness the computational, the analytical and the interdisciplinary critical thinking competencies necessary for continuing their studies in the secondary school and for further life.

Even though Greek official education documents appear keeping up with emerging ICT environments, teachers and ICT educators in our study object towards the recent lessening of school hours devoted to ICTs teaching and learning. They believe that cultivating appropriate and responsible use of technology is of pivotal importance in contemporary context but they recognise that shortage in digital education infrastructure deter teachers from implementing projects aiming at digital skills development. Also, both research literature and our research subjects report that non-availability of technological tools, excessive curriculum volume and lack of administrative support are
the three prominent barriers when implementing technology programmes in the classroom. Contrary to teachers’ belief, literature research reveals that there is a wealth of digital tools for classroom use which teachers can effectively and efficiently incorporate into their teaching. What teachers ask for is a professional, simple and comprehensive guidebook/toolbox which will aggregate practical ways on how to foster responsible digital citizenship qualities in their pupils and well-designed in-service education programmes and professional development seminars on exploiting ICTs in teaching practice and cultivating ICT skills.

Research Findings from Ireland

The Primary School curriculum in Ireland is currently delivered through an eight-year school cycle, which is structured as follows: junior infants, senior infants, and first to sixth classes. Children typically begin this cycle at age 4-5 and exist the primary school cycle aged 12-13. The curriculum is designed to focus on the following seven curriculum areas: arts education, new languages (where Irish is taught) from junior infants to sixth class, language (English), mathematics, religious education, physical education, social, personal and health education and the social environment and scientific education. Under each of these curriculum areas, themes are further subdivided based on specific subjects. Following this structure, a total of 11 subjects are taught throughout the primary school cycle.

Until recently, the topic of digital responsibility and citizenship was not addressed in any curriculum area of the primary school curriculum; however, in 2014 the Irish Department of Education and Skills introduced changes to the primary curriculum so that teachers are now encouraged to teach digital responsibility and citizenship through the SPHE curriculum. While this change to the curriculum does not address all facets of digital responsibility, it has led to the introduction of curriculum models on Internet Safety, which is now taught to children aged 8-12 years (senior cycle of the primary curriculum). To support teachers to teach these digital skills, the SPHE curriculum is now delivered through three distinct strands, namely: ‘Myself’, ‘Myself and Others’ and ‘Myself and the Wider World’. Under the subject area of ‘Myself and the Wider World’, senior primary students are taught to appreciate global issues, but also digital citizenship. As such, the following two units have been included in this section of the SPHE curriculum: ‘Developing Citizenship’ and ‘Media Education’. Within these units, there is targeted emphasis on keeping students safe, but also on supporting them to act and think responsibly.

With the introduction of this new curriculum area, there are a range of available digital tools that will help teachers to support students to become more responsible digital citizens. In terms of
how technology is used in practice in the classroom, there is limited literature available online which
tells how technology is used every day in the primary school classroom. However, a document from
2014 that was published by the Department of Education and Skills called ‘The Digital Strategy for
Schools 2015-2020 - Enhancing Teaching, Learning and Assessment’ provides support, guidance
and advice to teachers that should help them to foster the use of technology in their teaching practice.
This framework document also provides examples of best practice in using technology in the
classroom from other EU nations and aims to coach teachers in how best to integrate technology into
the curriculum. Despite these advances in recent years, the issue still remains that many schools in
Ireland are under-resourced to deliver high quality digital education.

From our desk-research activities it is apparent that the key challenges which teachers face
in implementing technology programmes in primary schools relate to a lack of IT infrastructure. While
our desk-research activities have uncovered a range of available digital resources that can be used
to support the teaching of curriculum subjects, the physical barriers of not having sufficient IT tools or
access to the Internet for students and teachers to use to engage with these materials, prevents
teachers from engaging with these resources and adapting them for use in their teaching practice.
Additional in-service teacher-training programmes are also required to support teachers to have the
confidence and competence to use these resources in the classroom. While there are a range of in-
service teacher-training programmes available in Ireland, which offer primary teachers the opportunity
to enhance their teaching skills for specific curriculum areas and subjects; however, we have not been
able to find programmes which support teachers to develop their digital skills for teaching. Instead
programmes on offer focus on the new language curriculum which will support teachers to teach
young learners who’s first language is not English, addressing inclusive and special needs education
and introducing play-based learning, as previously mentioned. This represents a significant barrier
for teachers and for the integration of technology in the classroom in primary schools in Ireland.

Despite these challenges, through our field-research activities, we were able to identify
additional digital resources and available teacher-training programmes that are available to teachers
during the summer months and are accredited CPD programmes. The field-research activities also
gave researchers the opportunity to gain an insight into the specific actions which schools are using
to develop responsible citizens from a young age, including adding a ‘buddy bus stop’ and ‘buddy
bench’ school yards so that young learners experiencing loneliness or being bullied can find support
from their peers; and how teachers use these initiatives to educate children about being safe,
respectful and responsible outside of school and online as well. Furthermore, while the literature
review process uncovered interesting approaches and methods for working with children of all ages
in new and innovative practices - such as play-centred learning, challenge-based learning,
collaborative learning - and novel activities - such as introducing web-quests, escape room challenges and concept-mapping techniques - the field research activities helped researchers to learn more about the innovative digital tools which teachers in Ireland are using to bring a different dimension to their teaching practice and how they make learning more appealing for primary school students. These digital resources range from online platforms with animated videos and short lectures on events throughout the year and historical artefacts from Ireland’s past; to online games that help young learners to improve their vocabulary in Irish or their understanding of mathematical equations and concepts. As such, through these combined research activities, researchers from FIPL were able to develop a holistic understanding of the challenges and successes of how digital literacy and citizenship are being taught in the primary school curriculum in Ireland.

Research Findings from Italy

The current picture of the educational situation in Italy, that emerged from the research and Focus Group session, shows the necessity to develop the foundations in the approach to informatics and digital technologies in the scholastic curriculum for primary school and first year of secondary school students. This document presents two sections: one regarding the results of the desk research, and the other to the analysis of the information and data collected in the Focus Group (Intellectual Output n. 3 of the DRC project).

The methods and experiences that are considered innovative the most in Italy, are those promoting Computational Thinking and Problem Solving. As a matter of fact, the Italian Ministry of Education itself explicitly invited teachers to apply them to the ordinary teaching curriculum for the forthcoming scholastic activities, as part of the National Strategy for the digitalisation of the school system (PNSD). Nevertheless, the analysis conducted highlights the necessity to promote another type of action, which consists of an investment in the preparation of both teachers and students in the acquisition the pertinent skills. What emerged are the following issues: inadequate infrastructures; insufficient availability of tools and resources; inadequate technological equipment (such as the possibility of using personal devices furnished by the school e.g. tablets, smartphones, etc.); unprepared human resources; inadequate classroom spaces.

Indeed, the choice of using particular and innovative methods of teaching/learning is strictly and directly linked to the schools’ effective disposal of adequate open spaces and laboratories or, in the best cases, of fab-labs (fundamental for innovative activities as robotics or tinkering in general). We must therefore consider the experiences here described, and the examples collected, as “desiderata”, simple good practices that the teachers called: “something we would like to do, but…”.
The opportunities of using the pedagogical resources and tools developed in the DRC project, would offer to Italy a concrete way to put into practice some fascinating new pedagogical ideas, which, in Europe, are already an operative reality and an active element of change towards the new Knowledge Society, Global Village and towards a more Connected World.

References

Reference List from Cyprus

• Wilson, A. D., & Golonka, S. (2013). Embodied cognition is not what you think it is. Frontiers in psychology, 4, 58.

Reference List from Greece

Reference List from Ireland

• Hummingbird Learning Centre (2016) Changes to the Primary School Curriculum, available at: https://hummingbirdlearning.com/changes-primary-school-curriculum/

• Irwin, Jones Dr. (2018) Towards a Values-Led Redevelopment of the Primary Curriculum, available at: https://www.ncca.ie/media/3458/seminar_one_irwin_paper.pdf

• ResourcEd (2016) Collaborative learning: what can it do for your students?, available at: https://resourced.prometheanworld.com/collaborative-learning-students/

Reference List from Italy

• Ministero dell’Educazione, dell’Università e della Ricerca MIUR – Direzione per il Sistema di Educazione e Formazione (2018), Indicazioni nazionali e nuovi scenari. Documento a cura del
Comitato Scientifico Nazionale per le Indicazioni Nazionali per il curricolo della scuola dell’infanzia e del primo ciclo di istruzione, Rome, February 22th 2018, Retrieved from http://www.miur.gov.it/documents/20182/0/Indicazioni+nazionali+e+nuovi+scenari/3234ab16-1f1d-4f34-99a3-319d892a40f2

Web Resources

• Associazione Italiana per il Calcolo Automatico / Italian Association for Automatic Calculation (AICA): https://www.aicanet.it/

• Bebras Games: http://bebras.it/

• DOL Master of Polytechnic University of Milan

• HOC-LAB of Polytechnic University of Milan: http://www.dol.polimi.it/hoc-lab/

• Edmondo INDIRE: http://edmondo.indire.it/

• Emma platform: https://platform.europeanmoocs.eu/login

• Impara Digitale: http://www.imparadigitale.it/

• Istituto Tecnologie Didattiche del Consiglio Nazionale delle Ricerche / Didactical Technologies Institute of National Research Council (ITD – CNR): https://www.itd.cnr.it/

• MAGICAL project (Game Based Learning): https://docs.google.com/document/d/1g7yrdsEALmvKHpW4KtKoDp-W0o6H3uMsPHdoFS6exb8/pub

• Makers@school project – 3D INDIRE: http://www.indire.it/progetto/maker-a-scuola/; http://3d.indire.it/

• MinecraftEdu: https://education.minecraft.net/

• Olimpiadi del problem solving: https://www.olimpiadiproblemsolving.it/web/index.php

• Open Simulator platform: http://opensimulator.org/wiki/Main_Page

• Programma il futuro - code.org: https://www.programmalifuturo.it/

• Scratch for educators: https://scratch.mit.edu/educators/

• Social4School project: http://www.social4school.eu

• Tuscia University Master: http://www.masterunitus.com/